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A B S T R A C T   

Cellular automata (CA) models have increasingly been used to simulate land use/cover changes (LUCC). Met
aheuristic optimization algorithms such as particle swarm optimization (PSO) and genetic algorithm (GA) have 
been recently introduced into CA frameworks to generate more accurate simulations. Although Markov Chain 
Monte Carlo (MCMC) is simpler than PSO and GA, it is rarely used to calibrate CA models. In this article, we 
introduce a novel multi-chain multi-objective MCMC (mc-MO-MCMC) CA model to simulate LUCC. Unlike the 
classical MCMC, the proposed mc-MO-MCMC is a multiple chains method that imports crossover operation from 
classical evolutionary optimization algorithms. In each new chain, after the initial one, the crossover operator 
generates the initial solution. The selection of solutions to be crossed over are made according to their fitness 
score. In this paper, we chose the example of New York City (USA) to apply our model to simulate three con
flicting objectives of changes from non-urban to low-, medium- or high-density urban between 2001 and 2016 
using USA National Land Cover Database (NLCD). Elevation, slope, Euclidean distance to highways and local 
roads, population volume and average household income are used as LUCC causative factors. Furthermore, to 
demonstrate the efficiency of our proposed model, we compare it with the multi-objective genetic algorithm 
(MO-GA) and standard single-chain multi-objective MCMC (sc-MO-MCMC). Our results demonstrate that mc- 
MO-MCMC produces accurate simulations of land use dynamics featured by faster convergence to the Pareto 
frontier comparing to MO-GA and sc-MO-MCMC. The proposed multi-objective cellular automata model should 
efficiently help to simulate a trade-off among multiple and, possibly, conflicting land use change dynamics at 
once.   

1. Introduction 

Land use/cover change (LUCC) models are widely used in many 
applications such as understanding historical urbanization trends (e.g., 
Mustafa et al., 2018d), simulating urban development (e.g., Barreira- 
González, Aguilera-Benavente, & Gómez-Delgado, 2017; Omrani, Par
mentier, Helbich, & Pijanowski, 2019), simulating agricultural systems 
(Xia et al., 2020), understanding the impacts of urban development on 
social segregation (e.g., Vermeiren, Vanmaercke, Beckers, & Van Rom
paey, 2016), and on urban flooding (Chang, Lee, & Huang, 2017). 
Usually, LUCC dynamics involve multiple potentially conflicting objec
tives which requires trade-offs among these objectives. For instance, a 

grassland nearby an urban settlement will likely be developed to urban 
land. However, when we consider urban sub-uses, e.g., industrial, 
commercial, and residential, and/or sub-densities, e.g., high-, and low- 
density, this makes the problem very hard for urban planners to think 
about and assess all possibilities, especially considering that the LUCC 
process is complex involving many stakeholders, geophysical and so
cioeconomic aspects (Mustafa, Rompaey, Cools, Saadi, & Teller, 2018). 
One approach to examining the trade-off between different objectives is 
optimizing each objective in isolation and then formulating a large 
number of trial solutions delivered from the optimal “isolated” solutions 
(Dunnett et al., 2018). A major shortcoming of this approach is that it 
requires a considerable amount of time and it does not ensure that the 
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delivered multi-objective solution is the “near” optimal one. Often, the 
necessity for the multi-objective nature of the LUCC dynamic leads to 
the increased complexity of the process because neighboring and distant 
areas cannot be treated independently. In other words, spatial auto
correlation can bias the modeling’s results if objectives and constraints 
are not formulated carefully (Cao et al., 2011). Multinomial/binary lo
gistic regression (logit) are static models that can address the spatial 
autocorrelation via a data sampling approach (Mustafa, Rompaey, et al., 
2018; Puertas, Henríquez, & Meza, 2014). Although multinomial logit 
(MNL) models can measure the influence of various causative factors of 
LUCC related to accessibility, geophysical features, policies, and socio- 
economic aspects, it is not recommended to incorporate local neigh
borhood settings into the MNL model as a static variable because the 
neighborhood settings are highly dynamic (Mustafa et al., 2018). A 
number of studies used search optimization algorithms such as genetic 
algorithms (GA) (e.g., García, Santé, Boullón, & Crecente, 2013; Mustafa 
et al., 2018) to calibrate neighborhood interactions in cellular automata 
(CA) models. Other search algorithms have been also used in the context 
of calibrating LUCC change models such as ant colony optimization (e. 
g., Ma, Li, & Cai, 2017), bee colony optimization (e.g., Yang, Tang, Cao, 
& Zhu, 2013), cuckoo search algorithm (e.g., Cao, Tang, Shen, & Wang, 
2015), and particle swarm optimization (e.g., Feng et al., 2018). 

Although Markov Chain Monte Carlo (MCMC) methods, such as 
Metropolis-Hastings and Simulated Annealing, have been used in opti
mization several decades ago (Geyer & Thompson, 1995; Hastings, 
1970), they are rarely used to calibrate LUCC models. Al-Ahmadi, See, 
Heppenstall, and Hogg (2009) employed a single-objective simulated 
annealing algorithm to calibrate their CA model. They, furthermore, 
compared the performance of simulated annealing with GA and 
concluded that the GA produced a better calibrated model than simu
lated annealing. Vrugt, Gupta, Bastidas, Bouten, & Sorooshian, 2003 
presented an extended MCMC method that considers multi-objective 
optimization of hydrologic models. This multi-objective MCMC (MO- 
MCMC) utilized the Pareto front concept that finds noninferior solutions 
in which an improvement in one objective requires a degradation in 
another. They concluded that the MO-MCMC has demonstrated effec
tiveness for finding the Pareto solutions. 

MCMC is a stochastic optimization algorithm that uses sampling 
techniques for global optimization. At each iteration, the candidate state 
is accepted or rejected after comparing its fitness score to the previous 
score. With a sufficiently large number of samples, the algorithm gua
rantees the convergence of the sample distribution to the actual distri
bution. In contrast to MCMC, GA, the most common search algorithms 
used to calibrate multi-objective CA LUCC models (e.g., Cao et al., 2011; 
García, Rosas, García-Ferrer, & Barrios, 2017; Mustafa et al., 2018), is an 
evolutionary algorithm that starts by a random generation representing 
a population of the search space, and progressively selects random in
dividuals to produce the children for the next generation using crossover 
and mutation operators, driving the population towards “near” optimal 
solution over successive generations. Machine learning (ML) methods 
are another way to calibrate LUCC model. Several studies demonstrated 
that ML-based methods outperform statistical calibration methods (e.g., 
Mileva, Suzana, Miloš, & Branislav, 2015; Mustafa et al., 2018). How
ever, ML methods are not easily interpretable and are often used as 
black-boxes (Kuo, Huang, Zulvia, & Liao, 2018). Moreover, they require 
human supervision and pre-labeled training data, which might not al
ways be feasible or affordable. 

In this study, we introduce a novel MO-MCMC to calibrate a CA 
LUCC model. Al-Ahmadi et al. (2009) compared a single-objective 
MCMC algorithm with GA and found that GA outperformed MCMC. 

However, our hypothesis is that MCMC can achieve higher accuracy 
than GA as MCMC generates a larger number of "new" individual solu
tions comparing to GA and therefore explores more search spaces. 
Furthermore, MCMC would ensure faster convergence than GA by 
having multiple chains (different starts) and employing an exchange 
scheme between different chains. Our central question in this study is: 
Does multi-chain multi-objective MCMC improve CA model perfor
mance in terms of the accuracy of spatial allocation and computational 
time comparing to the most common algorithm used to calibrate multi- 
objective CA models (GA)?. To answer this question, we propose a novel 
CA LUCC model that efficiently combines multiple objectives. The 
model allocates LUCC over a geographic space according to a transition 
rule that consists of two distinct components. The first component 
measures the impact of a set of LUCC static causative factors (e.g., dis
tance to roads, slope degree, etc.). The second component measures the 
impact of the dynamic neighborhood on each land unit. The first 
component is calibrated using the MNL model as in Mustafa et al. 
(2018b) and the second component is calibrated using MO-MCMC 
optimization. To our knowledge, no research exists within the LUCC 
modeling domain that introduces MO-MCMC in the LUCC model. Our 
MO-MCMC is based on the MCMC proposed by Gilks, Best, and Tan 
(1995) and the Metropolis–Hasting algorithm (Hastings, 1970; 
Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953) and the 
more recent work of Li (2012). Our MO-MCMC has multiple chains (mc- 
MO-MCMC) and therefore reasonable samples may be obtained. A po
tential advantage of having multiple chains is the possible interaction 
between them. Our model stores all solutions proposed in each chain 
and therefore it is expected that the solutions hold useful information 
about the directions towards the optimal solution space. Thus, after the 
first chain, we use the genetic algorithm crossover operator to create the 
initial solution for each new chain. The acceptance rate is used to tune 
the solutions towards the Pareto optimal front with time. The objective 
function is the maximization of the agreement between the simulated 
map and the observed land-use/cover (LUC) map by means of fuzzy 
similarity. 

The non-urban to low-, medium-, or high-density urban transitions in 
New York City (USA) between 2001 and 2016 were chosen as a case 
study application to demonstrate the applicability of our proposed 
model. Two observed LUC maps and six input variables related to 
geophysical, accessibility, socioeconomic aspects are used to calibrate 
the model. In order to highlight the potential of our mc-MO-MCMC CA 
model, we compare its performance with a CA model that is calibrated 
using multi-objective GA (MO-GA) and the classical single-chain MO- 
MCMC (sc-MO-MCMC). 

The following sections describe our mc-MO-MCMC CA model 
framework, case study, experimental results, and then provide our 
conclusions and future research directions. 

2. Model structure 

LUCC model presented in this study consists of two distinct modules: 
demand and allocation. The demand module estimates the rate of 
change from one LUC state to another state each timestep. The allocation 
module allocates the required changes per timestep over the entire study 
area. The demand module can either calculate the change rates based on 
past observed trends or be fed with the expected quantity of changes. 
The allocation module is a CA raster-based model. Fig. 1 outlines the 
general framework of the proposed model. 
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2.1. Cellular automata land-use/cover change model 

Cellular Automata (CA) is a bottom-up dynamic modeling approach 
that is widely used to model LUCC (Chen, Li, Liu, & Ai, 2014; Feng et al., 
2018; Mustafa, Heppenstall, et al., 2018). The model is raster-based uses 
a multi-objective approach to allocate multiple changes simultaneously, 
e.g., changes from grasslands to urban, arable lands, and forests. Multi- 
objective allocation procedure is necessary as each LUC class has its own 
preference with respect to compatibility with a neighborhood of 
different LUC classes. The spatial LUC transition potential P of a cell i,j 
being change its current LUC state at a certain timestep can be deter
mined by the following equation: 

Pi,j = (Pn)i,j ×(Pc)
α
i,j ×(Pcon)i,j (1)  

where (Pn)i,j is the local neighborhood (endogenous) effect on this cell, 
(Pc)i,j is the potential of LUCC according to (exogenous) causative fac
tors, α is a parameter expresses the importance of the causative factors, 
and (Pcon)i,j is the restrictive conditions for LUCC. The (Pc)i,j is produced 
by a non-binary logistic regression. The model performs the propor
tional odds assumption test (Kim, 2003) to opt for ordered or non- 
ordered multinomial logistic regression (MNL). Prior to running the 
MNL, the variance inflation factors (VIF) test is performed to measure 
the multicollinearity to ensure that there are no two or more causative 
factors measuring the same phenomena. The model, therefore, excludes 
factors that have VIF > 4 (Montgomery & Runger, 2003). This exclusion 
is an iterative procedure, i.e., the model excludes one variable at a time 
and reperforms the VIF test, and repeats until all variables have VIF ≤ 4. 
Because because the causative factors are measured in different units, e. 
g., meters, percentages, etc., the model standardizes all factors. 
Furthermore, the model employs a data sampling approach to address 
the spatial autocorrelation phenomena that may bias the results of the 
regression analysis (Mustafa, Heppenstall, et al., 2018; Rienow & 
Goetzke, 2015). 

2.1.1. Multi-objective Markov Chain Monte Carlo 
In our model, the local neighborhood effect (Pn)i,j represents a square 

space D, the Moore neighborhood, around the central cell and contains a 
number of cells that are arranged in a determined number of square 
distance zones d. The (Pn)i,j is calculated in each timestep according to 
the procedure of White and Engelen (2000) as follows: 

(Pn)i,j = ΣlΣdwkd (2)  

where wkd is the weighting parameter assigned to a cell I,j with LUC class 
k at distance zone d of the neighborhood D. The weighting parameters 
that define the neighborhood’s attraction or repulsion for LUC k are 
automatically calibrated by multi-chains multi-objective Markov Chain 
Monte Carlo (mc-MO-MCMC). The mc-MO-MCMC objective is to find 
the parameters that achieve the highest allocation accuracy rate for the 
process of changing LUC k to other classes (for example, transitions from 
forest to low-, medium-, high-density urban, grassland, or arable land 
simultaneously). 

The mc-MO-MCMC seeks a parameter vector v that yields the pareto 
front PF solution by attempting a number of states n changes according 
to a proposed solution. Each solution is proposed by a sampling pro
cedure that generates random numbers from the continuous uniform 
distributions with lower and upper endpoints. The acceptance proba
bility of changing the last accepted state st, for t ∈ [1,n], to a new state V 
is determined by the Metropolis–Hastings rule ꙍ (Hastings, 1970; 
Metropolis et al., 1953). In our model, the ꙍ is calculated as follows: 

ꙍ = min

⎛

⎝1, e

(
fit

(
v

100

)
− fit

(
st

100

))t ⎞

⎠ (3)  

where fit() is the fitness score assigned to a solution vector V according 
to the fitness function. The proposed solution is then accepted with the 
probability ξ ≤ ꙍ accept V (4) where ξ is a uniform random number 
between 0 and 1. The t, Eq. 3, that is increased with an increase in the 
number of stats, is used to control the acceptance rate over time. Lower t, 
at the beginning of each chain, allows the mc-MO-MCMC sampler to 
explore solutions far away from the Pareto front space in order to 
discover more search spaces whilst a higher t helps the sampler to 
converge towards the optimal solution by the end of the chain C. The 
number of chains is not predefined. Instead, the model uses a conver
gence stopping criterion when the fitness score for 10 successive chains 
becomes similar (Δ < 0.001). 

The key feature of our mc-MO-MCMC is that it considers multiple 
vertical chains. Although in literature, there is a great interest in parallel 
implementation of MCMC algorithms (e.g., Scott et al., 2016; Strid, 
2010) to reduce the computing time, our goal here is to improve the 
overall performance of the LUCC models. The mc-MO-MCMC proposed 
here applies an exchange scheme by crossing over a certain number of 
available solutions selected according to their fitness scores. The 
outcome “crossed over” solution represents an adaptive function to 

Fig. 1. Flowchart of the modeling land use/cover changes (LUCC) using multi-objective Markov Chain Monte Carlo (MCMC) Cellular Automata model.  

A. Mustafa et al.                                                                                                                                                                                                                                
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Fig. 2. The mc-MO-MCMC.  

Fig. 3. Population density in New York City (2018 American Community Survey).  
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guide the search to more precise jumps and thus results in a faster MCMC 
convergence. In our model, the crossover occurs considering the whole 
population of performed chains to take advantage of the available in
formation, directions and distances, of all explored areas within the 
search space. The number of solutions selected, parents, to be crossed 
over and to create the initial solution for the next chain is equal to the 
number of objectives ON being searched. The model selects the best 
vectors that represent one objective from each parent. One can claim 
that this elitist selection process may cause the premature convergence 
of the algorithm. However, lower t values, Eq. (3), at the beginning of 
each chain helps to prevent mc-MO-MCMC from early convergence. 
Fig. 2 presents the Pseudo Code of the proposed mc-MO-MCMC. 

2.1.2. Model evaluation and fitness function 
The proposed model solves multi-objective land allocation problems 

by determining a compromise noninferior solution in which an 
improvement in one objective requires a degradation in another. The 
fitness function used to evaluate the model’s allocation ability is the 
maximization of the fuzziness similarity rate between simulated and 
observed maps. The fitness function considers only new LUC changes to 
avoid having a high allocation accuracy rate which is a result of the 
persistence of unchanged cells within the study period. The fuzziness 
similarity rate (FSR) is calculated for each equally important objective as 
follows (Mustafa, Heppenstall, et al., 2018): 

FSRk =

∑

xk∈Xk,sim

⃒
⃒
⃒Ixk0⋅(1/2)0/2

, Ixk1⋅(1/2)1/2
,……,Ixkd⋅(1/2)d/2

⃒
⃒
⃒

max

Xk,actul
× 100 (5)  

where FSRk (0 ≤ FSRk ≤ 100) is the fuzziness similarity rate for LUC class 
k, Iikd is 1 if cell ik in the simulated map at zone d (0 ≤ d ≤ 4) has the 
similar k to one cell at zone d in the observed map otherwise is 0, Xk,sim is 
the total changes of k in the simulated map and Xk,actul is the total 
changes of k in the observed map. Comparing to spatial overlay tthat 
adopts a cell to cell location agreement, an advantage of a fuzzy simi
larity method (Hagen, 2003) is that it can differentiate between near and 
far misses as they operate at larger scales than the cell. 

3. Case study and results 

To evaluate the performance of the proposed mc-MO-MCMC CA 
model, we applied it to simulate urban expansion of three different 
densities, objectives, in New York City (USA) between 2001 and 2016. 
Furthermore, we applied two other models: MO-GA CA and sc-MO- 
MCMC CA and compared them with the mc-MO-MCMC CA. 

3.1. Study area 

New York City (NYC) is the most populous and densest US city with 
more than 8.4 million people according to the 2018 American Com
munity Survey. It is located on the coast of the Northeastern United 
States and covers ~784 km2. NYC is made up of five county-level 
administrative divisions or “boroughs”: The Bronx, Brooklyn, Manhat
tan, Queens, and Staten Island. The population is highly concentrated in 
Manhattan and Brooklyn (Fig. 3). The city lies at the confluence of 
several rivers and the majority of the Metropolitan region situated less 
than 5 m above the mean sea level (Colle et al., 2008). The number of 30 
× 30 m cells that changed their state from non-urban to low-density, 
medium-density, and high-density (our three objectives) between 
2001 and 2016 were 7704, 6946, and 2398 respectively. Various rates of 
changes are important to demonstrate the spatial allocation ability of the 
LUCC model, particularly low rates, such as non-urban to high-density 
urban in our case study, because low change rate means having less 
information to calibrate/train any model. 

3.2. Data 

Primary datasets in this case study are two observed LUC maps and 
associated LUCC causative factors. Two LUC maps for 2001 and 2016 
were extracted from United States National Land Cover Database 
(NLCD) that is a raster dataset at 30-m spatial resolution (Homer et al., 
2007; Yang et al., 2018). Because the NLCD team follows strict image 
classification and post-classification procedures, the produced LUC in
formation tends to be accurate and consistent. Yang et al. (2018) re
ported that the overall agreement of NLCD is 90% for 2001 and 88% for 
2016. The original NLCD 20 classes were grouped into nine aggregated 
LUC classes (Table 1): 1 Built-up low-density, 2 Built-up medium-den
sity, 3 Built-up high-density, 4 Built-up open/green spaces, 5 Grass
lands/barren lands, 6 Cultivated lands, 7 Forests, 8 Wetlands, and 9 
Water bodies. The built-up density represents percent imperviousness 
which considers a cell with impervious surfaces accounting for 20% to 
49% as low-density, 50% to 79% as medium-density, and 80% to 100% 
as high-density. A series of geophysical and socioeconomic factors were 
introduced as LUCC causative factors in this case study, Fig. 4. Elevation 
and slope (geophysical factors) were derived from United States 
Geological Survey (USGS) 10- and 30-m Digital Elevation Models 
(DEMs). Euclidean distances to highways and local roads (accessibility 
factors) were extracted from USGS National Transportation Dataset 
(NTD) that was published in September 2019. Total population and total 
households’ income (socioeconomic factors) were delivered from 
American Community Survey (ACS) of 2016. All the input data were 
generated at or resampled to 30-m spatial resolution to meet the NLCD 
data resolution. 

3.3. Model configurations 

The model is calibrated based on the observed changes from non- 
urban to one of the urban densities (low, medium, or high) between 
2001 and 2016. The model’s performance (Eq. (5)) is calculated by 
comparing the simulated map of 2016 with the observed 2016 map. For 
this case study, the quantity of change equals the observed number of 
new urban cells for the study period divided by timesteps. The temporal 

Table 1 
The aggregated nine land use/cover classes used in this study.  

Original NLCD classes Aggregated classes 

Class 
code 

Description Class 
code 

Description 

11 Open Water 9 Water 
12 Perennial Ice/Snow 9 Water 
21 Developed, Open Space 4 Built-up Open/Green 
22 Developed, Low Intensity 1 Built-up Low-density 
23 Developed, Medium Intensity 2 Built-up Med-density 
24 Developed High Intensity 3 Built-up High-density 
31 Barren Land 5 Grasslands/Barren 

Lands 
41 Deciduous Forest 7 Forests 
42 Evergreen Forest 7 Forests 
43 Mixed Forest 7 Forests 
51 Dwarf Scrub 7 Forests 
52 Shrub/Scrub 7 Forests 
71 Grassland/Herbaceous 5 Grasslands/Barren 

Lands 
72 Sedge/Herbaceous 5 Grasslands/Barren 

Lands 
73 Lichens 5 Grasslands/Barren 

Lands 
74 Moss 5 Grasslands/Barren 

Lands 
81 Pasture/Hay 6 Cultivated lands 
82 Cultivated Crops 6 Cultivated lands 
90 Woody Wetlands 8 Wetlands 
95 Emergent Herbaceous 

Wetlands 
8 Wetlands  
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resolution (timestep) for our case study is set at one year. We did not set 
any constraints so the (Pcon)i,j in Eq. (1) is 1. The neighborhood (Eq. (2)) 
size is 3 × 3 neighborhood window. The selection of the window size is 
made based on the findings of previous studies (Chen et al., 2014; 
Mustafa, Rienow, et al., 2018) that conducted a comprehensive sensi
tivity analysis to identify the best neighborhood window size. Chen et al. 
(2014) used the same a spatial resolution of 30-m as our case study. 

The significance of the chi-squared statistic of the proportional odds 
assumption is <0.001 so that the assumption of having a natural 
ordering in the dependent variable is violated. Consequently, the model 
employs a non-ordered multinomial logistic regression (MNL) to 
calculate the (Pc)i,j in Eq. (1) according to Mustafa et al., 2018. The main 
theme of this paper is the calculation of (Pn)i,j in Eq. (2) that is calculated 

using our novel mc-MO-MCMC. As GA are well known method to solving 
multi-objective optimization problems (Cao et al., 2011; XIU, 2000), we 
also calculated (Pn)i,j using MO-GA and compared the results with the 
mc-MO-MCMC. The various MO-GA operators (selection, crossover, and 
mutation) were determined by undertaking empirical experiments on 
several values with low number of generations as in Mustafa et al., 2018. 
The best performing operators’ settings will then used in the final MO- 
GA runs. We also tested several numbers of chains and solutions per 
chain for  mc-MO-MCMC. 

Fig. 4. Land use/cover change causative factors for New York City case study.  

Fig. 5. MNL causative factors coefficients and significance level p-value ≤ 0.05 
(in brackets). 

Fig. 6. Weighting parameters (y-axis) that represent the interaction between an 
urban cell with a certain density and other LUC. 
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Fig. 7. The average FSR (y-axis) for number of solutions (x-axis) for (a) sc-MO-MCMC, (b) mc-MO-MCMC (with 10, 20 and 30 chains), and (c) MO-GA (with 10, 20 
and 30 generations). 

Fig. 8. Comparison of observed and simulated maps for 2016 generated by different models in study area.  
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3.4. Results and discussions 

Our model has been coded in MATLAB and run on a PC clocked at 
2.60 GHz with a 32.0 GB RAM. The proposed mc-MO-MCMC CA stopped 
after 33 chains (with 200 solutions per chain) and reached an average 
FSR (Eq. (5)) of 49.7. The results of multinomial logistic regression 

(MNL) (Fig. 5) show that elevation, Euclidean distance to local roads, 
and total population are the only factors that are statistically significant 
in all changes (from non-urban K0 to low-density K1, medium-density 
K2, and high-density urban K3). By far, total population is the most 
dominant factor. Interestingly, average household income shows an 
inverse significant correlation with low- and medium-density develop
ment implying that rich people tend to live in lower-density districts. 
The inverse correlation between distance to local roads and urban 
development indicates that new urban development especially low- and 
medium-density are likely to happen near local roads. 

The weights calibrated by the mc-MO-MCMC that defines the 
neighborhood interactions are presented in Fig. 6. The calibration finds 
a remarkable positive correlation between the development of new low- 
density urban areas and the number of existing low-density urban lands 
within the neighborhood. Furthermore, it is notable that low-density 
development is most likely found away from high-density urban areas 
and near urban green areas and forests. In contrast, the potential of 
finding new high-density projects is increased near or within high- 

Table 2 
The FSR (%) for the best pareto front solutions for each model.   

k0 to k1 k0 to k2 k0 to k3 average σ* 

mc-MO-MCMC** 50.60 49.66 47.07 49.11 1.49 
sc-MO-MCMC*** 38.15 49.67 7.73 31.85 17.69 
MO-GA**** 42.72 32.61 47.46 40.93 6.19  

* Standard deviation. 
** Number of chains: 20; solutions per chain: 200 (total solutions: 4000). 
*** Number of solutions: 10,000 (total solutions: 10,000). 
**** Number of generations: 30; solutions per generation: 200 (total solutions: 

6000). 

Fig. 9. The fuzzy similarity rate (FSR) of the newly allocated cells. FSR ranges from 1 (if the model allocated the cell in the correct location) to 0 (if the cell was 
allocated more than four cells away from the correct location). 
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density urban neighborhoods and when being away from low-density 
neighborhoods. The calibration also shows that new medium-density 
urban developments are positively influenced by the existing medium- 
density lands and negatively by cultivated lands. The relative impor
tance of the causative factors α (Eq. (1)) is 0.06, 0.28, and 0.16 for low- 
density, medium-density, and high-density developments respectively 
implying that neighborhood effect has a greater influence on all types of 
urban developments than the selected causative factors (Section 3.2). 

The run time of the three models is slightly different. The average run 
time per 100 solutions are 872, 861, and 880 s for the mc-MO-MCMC 
CA, sc-MO-MCMC CA, and MO-GA CA respectively. The reason is that 
the single chain MO-MCMC has less operators (acceptance rate) than 
multi-chain MO-MCMC (acceptance rate, selection, and crossover) and 
MO-GA (selection, crossover, and mutation operators). 

Fig. 7 illustrates the average FSR for the best Pareto front solution for 
the three models using different sets of the number of chains/genera
tions and a number of solutions. For the sake of comparison, we pre
defined the number of chains/generations and individual solutions per 
chain/generation for MCMC and GA. The multiple graphs reveal that our 
mc-MO-MCMC CA model approaches the “near” optimal search space in 
much fewer iterations than MO-GA and with much fewer solutions than 
MO-GA and sc-MO-MCMC, which clearly indicates that the proposed 
model performs much better than other models in terms of computation 
time (lower number of runs) and allocation accuracy. This can be 
explained by the fact that the proposed model takes more adaptive 
moves by exploring the distance between and direction of all available 
solutions. 

Fig. 8 shows the actual LUC map of 2016 and the 2016 maps simu
lated by different models. The simulated map generated by the mc-MO- 
MCMC CA model matches better the actual 2016 map compared to other 
models. Table 2 lists the best pareto front FSR for each objective 
(changes from non-urban K0 to low-density K1, medium-density K2, and 
high-density urban K3). The findings indicate that the proposed mc-MO- 
MCMC provides a good trade-off between objectives. 

The detailed FSR is shown in Fig. 9. This figure demonstrates the 
allocation ability of the mc-MO-MCMC CA model to properly allocate 
the new cells over the study area. Table 3 lists the number of allocated 
cells in each FSR class. These FSR classes resulted from the fuzzy 
membership function of exponential decay with a halving distance of 
two cells and a neighborhood window of four cells (Eq. 5). The model 
spatially allocates 42.7%, 43.6%, and 43.3% of the new cells of low- 
density, med-density, and high-density respectively, at the correct 
location or at the adjacent cell which is significantly better than sc-MO- 
MCMC and MO-GA. 

Both MCMC and GA are stochastic optimizers that start from a 
random search with no prior information. Thus, the variability of the 
modeling outputs is a crucial aspect to be addressed. For instance, we 
ran our mc-MO-MCMC model 10 times, each run had 10 chains and each 
chain had 200 individual solutions. The average Kappa index that ex
presses the spatial agreement among the 10 simulations is 0.63 (1 in
dicates a maximum level of agreement) considering only the new urban 
cells. In our case study, we tested several runs with various numbers of 
chains and solutions per chain. Our results (Fig. 6) represent the best 

model run. An alternative approach to address the variability of the 
modeling outputs is to have multiple runs and assign a probability value 
for each land unit, e.g., cell, that represents the frequency at which the 
model changed the cell’s LUC state (Rienow & Goetzke, 2015). 

4. Conclusions and future work 

The objective of this study was to explore the potential of using a 
multi-objective Markov Chain Monte Carlo (MO-MCMC) to calibrate 
land-use/cover change (LUCC) models that consider multiple allocation 
objectives. We developed a raster-based cellular automata (CA) model to 
present and evaluate the proposed MO-MCMC calibration method. We 
compared our CA model with a model that has been calibrated using a 
multi-objective genetic algorithm (MO-GA) because the MO-GA is one of 
the most employed algorithms to calibrate multi-objective LUCC 
models. With three simultaneous objectives, our case study in New York 
City clearly demonstrated the potential of our model to simulate LUCC 
dynamics more accurately and faster than the MO-GA. It worth 
mentioning that the proposed model can simulate the full LUCC tran
sitions between all nine LUC classes (Table 1). However, our focus in this 
article was on introducing the novel mc-MO-MCMC CA model and 
comparing it with MO-GA CA. 

Although the focus of this study was on only three objectives, the 
results showed the potential of the model for handling many objectives 
and variables. In this sense, one of the important directions for future 
research is to extend our model to handle LUCC practices that seek a 
trade-off between multiple physical and social concerns. This is espe
cially important for strategies that address multiple domains (e.g., 
Iwaniec et al., 2020; Keeler et al., 2019), and therefore our model can 
bring analytical and simulation approaches in the planning process in 
which planners and various stockholders need to reveal the tensions 
between plausibility and desirability in future LUCC visions. For 
example, as a multi-objective model, our model could simulate the 
trade-off between different LUCC visions that promote either economic 
welfare, social equity, or environmental protection objective. Future 
work should also explore the effects of spatial heterogeneity, and 
examine the models’ sensitivity related to uncertainty and neighbor
hood size. Lastly, the development of a generic LUCC tool with a user 
interface is the final goal of this research. 

Software and data availability 

All data used in this case study are publicly provided by USGS htt 
ps://viewer.nationalmap.gov/basic/ and US Census Bureau https:// 
www.census.gov/programs-surveys/acs/guidance/comparing-acs-dat 
a/2016.html. MATLAB codes of the developed model are available upon 
reasonable request from the corresponding author. 
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Table 3 
The percentage of new cells (% of total changes) within each fuzzy similarity rate (FSR) for each objective (from non-urban k0 to low-dens k1, medium-dens k2, or 
high-density urban k3).  

FSR K0 to K1 K0 to K2 K0 to K3  

mc-MO-MCMC sc-MO-MCMC MO-GA mc-MO-MCMC sc-MO-MCMC MO-GA mc-MO-MCMC sc-MO-MCMC MO-GA 

0 22.25 26.61 31.66 27.03 26.11 41.08 35.51 86.37 34.55 
0.25 9.49 14.10 9.64 7.65 7.43 11.30 5.53 2.98 5.91 
0.35 11.46 15.97 12.06 8.61 9.46 12.30 6.42 2.10 7.21 
0.5 14.07 17.86 13.71 13.07 13.87 12.30 9.27 2.68 9.60 
0.71 19.13 18.47 14.24 18.76 19.19 13.32 15.39 3.31 14.88 
1 23.60 6.99 18.69 24.88 23.95 9.70 27.88 2.56 27.84  
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