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Machine intelligence, systemic risks, and 

sustainability 
 

Abstract 
 
Automated decision making and predictive analytics in combination with rapid progress 
in sensor technology and robotics are likely to change the way individuals, communities, 
governments and private actors perceive and respond to climate and ecological change. 
Machine intelligent methods are already today being applied within a number of 
research fields related to climate change and environmental monitoring. Investments 
into applications of these technologies in agriculture, forestry and the extraction of 
marine resources also seem to be increasing rapidly. Here we elaborate the various ways 
by which machine intelligence is making progress in domains of critical importance for 
sustainability, with a special emphasis on possible systemic risks. These risks include 
a) algorithmic bias and allocative harms; b) unequal access and benefits; c) cascading 
failures and external disruptions; d) mis- and disinformation, and e) trade-offs between 
efficiency and resilience. We explore these emerging risks and discuss the limitations 
of current governance mechanisms in addressing the impact of MI risks on 
sustainability. 
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1. Introduction 
 
Technological change is a fundamental component of scientific and economic 
breakthroughs (Arthur, 2009), and has the potential to dramatically influence global 
efforts toward sustainability (Galaz, 2014; Westley et al., 2011). As the pressure of 
human activities increasingly shape the biosphere and the climate system, so does the 
hope that machine intelligence (MI)1 (including artificial intelligence through machine 
learning and deep learning) and associated technologies such as robotics and the 
Internet of Things (IoT), will be able to increase societies’ capacities to detect, and 
adapt and respond to climate and environmental change (Campbell et al., 2019; 
Herweijer and Waughray, 2018; Joppa, 2017). Numerous reports highlight how 
applications of MI and robotics may help address climate change and biodiversity loss 
and contribute to more effective monitoring and uses of natural resources as well as 
achievement of the Sustainable Development Goals (SDGs) (Future Earth, 2020; 
Vinuesa et al., 2020).  
 
While this growing machine intelligent “digital ecosystem for the planet”(Campbell et 
al., 2019) could lead to more effective uses of land- and seascapes, augmented 
environmental monitoring capacities, and improved transparency in supply chains, it 
could also create new systemic sustainability risks as MI technologies diffuse into new 
social, economic and ecological contexts. While some early syntheses have attempted 
to tackle these risks (Future Earth, 2020; Wearn et al., 2019), potential allocative 
harms (Barocas et al., 2017) and unexpected social and ecological effects (Galaz and 
Mouazen, 2017) remain either overlooked or poorly elaborated. Prominent agenda-
setting reports about the social impacts of AI either ignore sustainability dimensions 
altogether (Veale et al., 2018), or underemphasize possible social, economic and 
ecological risks (Joppa, 2017; Lajoie-O’Malley et al., 2020). 
 
In this article, we explore systemic risks for sustainability created by the diffusion of 
MI.2 Hence, we do not focus on already explored direct climate impacts such as the 
energy consumption or the carbon footprint of deep learning and data-mining (García-

                                                
1 Here we use the terms “artificial intelligence”, “machine intelligence” and “machine intelligent” to 
refer to technologies that employ either machine learning (ML) and/or “deep learning” (DL) methods 
(see House of Lords 2018). ML and DL are different from a technical point of view, but our main 
interest in this paper is in the social and ecological impacts of machine intelligence, rather than the 
underlying technique per se. 
2 By risk, we refer to a measure of the probability and severity of adverse effects (Lowrance, 1976). By 
‘systemic risks’ we mean risks that evolve from complex interactions emerging from human, machine 
and environmental interactions, and that could lead to disruptions that propagate through these systems 
through the process of contagion (Centeno et al., 2015; Helbing, 2013). By ‘sustainability’ we refer 
specifically to the importance of the biosphere and a stable Earth system for human development and 
prosperity (Folke et al., 2016; Steffen et al., 2015). 
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Martín et al., 2019), nor on opportunities for MI in helping address climate change 
(Rolnick et al., 2019), but on networked risks that result from an increased 
connectivity between humans, machines and social-ecological systems. Our empirical 
analysis and discussion focus exclusively on early applications of MI in domains 
critical for biosphere-based sustainability - that is, the management and resilience of 
so-called ‘production ecosystems’ such as agriculture and forestry; the technical 
infrastructure underpinning their production; and information technologies that 
humans use to make sense of, and act collectively on, a changing planet and climate. 
More specifically we ask: 
 

a) What is the relationship between increased applications of machine 
intelligence, notions of “responsible AI”, and biosphere-based sustainability? 

b) Where in the world, and into which sectors directly relevant for biosphere-
based sustainability, are machine intelligent technologies diffusing?  

c) Which are the most prominent systemic risks from a sustainability perspective? 
d) What could be learnt from other domains about the possible governance of 

these systemic sustainability risks? 
 
Our analysis combines a literature synthesis with new data to gain a deeper empirical 
understanding of these issues. Figure 1 describes the MI technologies, key 
sustainability opportunities and systemic risks discussed in this article. 
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Figure 1. Illustration of machine intelligent technologies and their general 
sustainability opportunities and risks discussed in this article 
 

 
Sustainability Opportunities 
 

Sustainability Systemic Risks 
• Increased efficient use of natural resources and 

energy 
• Addressing social, climate, ecological data gaps 
• Augmented real-time monitoring of environmental 

change 
• Refined predictive ecological and climate modeling 
• MI-supported management strategies 

• Algorithmic bias and allocative harms 
• Unequal access, benefits, and impacts 

• ’Normal accidents’ and targeted attacks 
• Information pollution and misinformation 

• Inaccurate estimates of resilience versus efficiency 
trade-offs 
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2. The growing importance of machine intelligence for 
sustainability 

 
MI-based methods are already now being applied in a number of research fields 
related to the environmental, sustainability and climate sciences. Examples include 
machine intelligent applications in climate and Earth system modeling (Rasp et al., 
2018; Reichstein et al., 2019); precision or digital farming and forestry (Joppa et al., 
2016); environmental monitoring (Hino et al., 2018); autonomous underwater marine 
interventions (Girard and Du Payrat, 2017) and marine data collection (Nunes et al., 
2020); tracking of illegal wildlife trade (Di Minin et al., 2019); and “smart” urban 
development (Ilieva and McPhearson, 2018). Supervised and semi-supervised 
convolutional neural networks for example, can help find and make short term 
predictions about extreme weather patterns and anomalies in changes in land use 
(Helbing, 2013), thus offering important information for policy-makers, companies 
and insurance agencies trying to act proactively on the impacts of climate change. 
Data driven methods supported by MI can also help farmers align planting, sowing, 
and management practices to specific local conditions, and adapt to market 
fluctuations (Jiménez et al., 2016).  
 
The potential for MI seems to be driving a growing interest from the private sector. 
The smart city market is expected to reach USD 460 billion by 2027 (Grand View 
Research, 2019) and smart cities AI software alone is projected to total USD 5 billion 
annually by 2025 (Tractica, 2020) relying on MI for traffic management, smart 
policing, lighting control, facial recognition, and smart waste and disposal systems all 
with goals to improve urban livability and sustainability. According to estimates, 
nearly 12 million IoT sensors will be installed and in use on farms around the world by 
the year 2023 (Meola, 2020), and agricultural technology (agtech) investment reached 
a new record of $1.5 billion in 2017, and since 2012, venture capital investment in 
agtech has grown by 80 percent annually (Rotz et al., 2019). The precision forestry 
market could grow from USD 3.9 billion in 2019, to reach USD 6.1 billion by 2024 
(Markets and Markets, 2019).  
 
Figure 2 shows our analysis of the geographical distribution of MI-technologies 
(including applications of IoT, robotics and analysis supported by machine 
intelligence) in sectors linked to the management of land- and seascapes.  
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Figure 2. Global distribution of MI technologies and investments in farming, 
forestry and the marine/aquaculture sectors 

 

 
 
Figure 2A. Geographical and sectoral distribution of companies that develop applications of IoT, sensors, 
robotics and MI-augmented analytics for aquaculture, forestry and agriculture. Total number of 
companies N=339. Figure 2B. Geographical distribution of investments in companies listed in 1A. Note 
that funding information (including angel investment, debt financing, grants, and other) is only available 
for N=177 companies. See Supplementary Information for details.    
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Hence while still nascent in terms of both scale and impact, applications of MI and 
other associated technologies such as intelligent underwater monitoring drones, and 
digital forestry, could be viewed as examples of technological “niche-innovations” 
(Geels et al., 2017) capable of rapid upscaling and diffusion with impacts on the 
climate system, as well as biodiversity and ecosystem impacts across multiple regions. 
It also should be noted that the diffusion of MI-technologies unfolds not only through 
increased investments, but also by the much less visible infusion of e.g. deep learning 
systems into existing technologies (Engström and Strimling, 2020). 

2.1 “Responsible AI” and Sustainability 
There is a growing recognition that the increased diffusion of MI in society not only 
entail opportunities but also risks by amplifying gender discrimination, and increase 
social inequalities. Numerous attempts to define “ethical AI”, “responsible AI” or “AI 
for Good” that have emerged in the last years repeatedly elaborate upon issues such as 
social bias, privacy, accountability, security and transparency (Fjeld et al., 2020; Jobin 
et al., 2019). However, this growing body of principles and initiatives typically do not 
seem to address sustainability risk dimensions.  
 
Figure 3 summarizes our analysis of 186 documents exploring principles for the 
benevolent use of AI. As the data indicates, climate, sustainability and environmental 
dimensions are consistently overlooked, or addressed to a far lesser extent than issues 
like transparency, bias and accountability. Many of the principles related to 
algorithmic bias and transparency are indeed applicable for some of the issues 
discussed below. Nonetheless, issues of environmental sustainability pose distinctive 
challenges that warrant dedicated attention in AI ethical principles. 
 
We argue that five areas related to a) algorithmic bias and allocative harms; b) unequal 
access and benefits; c) cascading failures and external disruptions; d) mis- and 
disinformation, and e) trade-offs between efficiency and resilience, will prove critical 
for future discussions about MI for sustainability.  
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Figure 3. Summary of analysis of publicly available ethical principles of AI, or 
responsible AI from the public and private sector, including international 
organizations.  

 
 
Comment: Visualized numbers show frequency of mentions of key words found in published 
“responsible AI” principles. Selected keywords are related to core ethical principles (gray columns), 
compared to key words related to sustainability (green columns). Number of documents analyzed N=186, 
see Supplementary Information for details about methods.  
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3. Machine intelligence, algorithmic bias and allocative harms  
 
Machine intelligent technologies could transform the ways in which the climate 
system, farmlands, oceans, urban ecology and other ecosystems are monitored, 
managed and protected. However, their effectiveness and broader social, economic 
and ecological impacts however, unfold within a wider social, technological and 
environmental context (Markolf et al., 2018) making their distributional consequences 
and sustainability risks difficult to predict with specificity (Olsson et al., 2014). 
However, drawing from insights from other domains such as policing and health care, 
a number of foreseeable risks could be acted upon proactively. 
 
The first risk relates to possible algorithmic biases and their allocative harms (Barocas 
et al., 2017). Growing volumes of environmental and ecological data are a 
fundamental prerequisite for the application of machine intelligence for e.g. 
conservation and digital farming (Basso and Antle, 2020).  Environmental and 
ecological data however, have well known limitations, both in their temporal 
coverage, and geographical spread (Joppa et al., 2016). Satellites, drones, mobile 
devices, sensors and social media have created an abundance of data with multiple 
applications for both science and practice, can be combined with additional data 
gathering technologies, and analyzed using various machine intelligent methods to 
resolve challenging data gaps (Blumenstock, 2016; Campbell et al., 2019; Creutzig et 
al., 2019; Herweijer and Waughray, 2018; Vinuesa et al., 2020).  
 
Urban sustainability scholars have already raised a number of issues related to MI and 
tentative threats to privacy, research ethical challenges, and the risks resulting from 
spurious correlations (Girard and Du Payrat, 2017). For example, location-tracking 
systems via smartphones and vehicles make it possible to not only know location, but 
to triangulate a person’s identity, even with relatively little data. Such risks highlight 
the need for robust and transparent data management policies. Our own simple 
overview of the data management policies of the selected companies presented in 
Figure 2, show that only 14% have publicly available data principles, policies, and 
practices (see details in Supplementary Information).     
 
Several AI design problems could potentially have negative ecological and social 
repercussions in the sustainability domain. These include inconsistencies and biases in 
training data; security breaches leading to corrupted data capture and decision-making 
systems; flawed machine intelligent models; or incorrect applications (as has been 
shown in other domains such as policing and the health sector (Barocas and Selbst, 
2016; Obermeyer et al., 2019) could potentially also have negative ecological and 
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social repercussions in the sustainability domain. Algorithmic biases can have a 
number of sources (Danks and London, 2017), illustrated for our purposes in Box 1.  
 

Box 1. Algorithmic bias in the sustainability domain 
 
Training data bias – Machine intelligent algorithms that are designed with poor, 
limited, or biased data sets fall victim to this type of bias. Algorithms will learn and 
recognize patterns from training inputs, regardless of whether or not they are 
representative of the real-world. For example, machine learning algorithms 
developed in data poor contexts could, if not validated properly with local 
knowledge and expert opinion, lead to incorrect management recommendations to 
small-scale farmers who would struggle to maintain high, stable yields (Jiménez et 
al., 2019).  
 
Transfer context bias – Machine intelligent algorithms that are designed for one 
ecological, climate, or social-ecological context, and then transferred to another 
exhibit the “transfer context bias.” Such bias may emerge as individuals and 
companies use off-the-shelf machine intelligent software for their purposes 
(Chouldechova and Roth, 2018). While the training data and the resulting model 
may be developed and suitable for the initial social-ecological situation (say, a big 
farm in a data rich context), using it in a different setting (e.g. a small farm) could 
lead to flawed and damaging results. For example, forest monitoring and carbon 
sequestration models developed in Australia and transferred to Indonesia led to 
controversies partly due to their tentative transfer context bias (Ochieng, 2017). The 
fact that ecosystems both on land and in the ocean are changing rapidly as the result 
of climate and ecological change (Hobbs et al., 2009) also pose serious challenges as 
models built on historical ecological conditions, could fail as the climatic and 
ecological context shifts.   
 
Interpretation bias – Even if both the training data, and the context in which the 
algorithm is used is appropriate, their application can still lead to “interpretation 
bias”. In this type of bias, a mismatch between what the algorithm produces and 
what the user needs can lead to unsuitable application of the results. A machine 
intelligent system (e.g. decision support tool) might be working as intended by its 
designer, but if the user does not fully understand its utility, or tries to infer different 
meaning that the algorithm might not support, biases can begin to present 
themselves on the application side. Algorithm developers for digital agriculture, as 
an example, are still unable to convert complex geospatial information into 
appropriate crop management actions, resulting in misinterpretation and misuse of 
data. For example, many farmers utilize precision technology to apply more (instead 
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of less) nitrogen (N) fertilizer to low-yielding portions of rain-fed fields in the hope 
of increasing yields (Lajoie-O'Malley et al., 2020).  

 

4. Unequal access, benefits, and impacts 
The unequal distribution of risks and benefits can also emerge as the result of existing 
resource constraints, and unequal access to information and communication 
technologies (Salemink et al., 2017; United Nations Development Programme, 2019). 
At present, smallholder farmers account for a considerable proportion of global food 
production (Graeub et al., 2016), and especially in less wealthy countries, many people 
depend on small-scale family-farms to meet their nutritional needs (Lowder et al., 2016). 
While applications of MI for farming could contribute to increased yields and resource 
efficiency (World Bank Group, 2019), the distribution of such benefits cannot be taken 
for granted. On a general level, it is well-known that even very simple non-MI 
technologies for intensifying agriculture are often deemed unaffordable by poor 
members of local communities (Jiren et al., 2020). In addition, there is a clear “digital 
divide” in data-driven farming with small-scale farmers facing serious obstacles to 
access to big data and mobile technologies (Mehrabi et al., 2020).  
  
The economic benefits of MI applications in farming also appear to be greatest for larger 
farms that can spread their fixed costs over many acres, and that can reduce labor costs 
through automation (Lajoie-O'Malley et al., 2020). As a result, critics have argued that 
the growing interest on “digital agriculture” by influential international actors such as 
the World Bank, the UN Food and Agriculture Organization (FAO) overemphasize the 
need to increase aggregate food production for a growing population, while ignoring 
underlying well-known socio-political issues driving food security such as poverty and 
social inequalities (Lajoie-O'Malley et al., 2020; Sen, 1982). 
 
Equal access to MI-technologies does not guarantee equal or fair outcomes however. 
Even if farmers are able to optimize their specific operations cost-effectively, 
widespread use of MI in farming may still result in concentration of capital and 
deepened inequality. As many traditional input and equipment providers are 
increasingly positioning themselves as data companies, it has been argued that this 
accumulated information might be put to use to extract rents, lock farmers into 
unfavorable contracts, or price discriminate across services (Clapp and Ruder, 2020; 
Mateescu and Elish, 2018). There are also concerns about the impacts of automation 
replacing jobs in these sectors, especially as it could prove detrimental for vulnerable 
social groups such as migrant workers (Ileva and McPhearson, 2018). Small-scale 
fisheries and coastal communities (estimated to employ some 37 million people FAO, 
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2019)), and small-scale enterprises in the forestry sector (providing employment for an 
additional estimated 41 million people (FAO and United Nations Environment 
Programme, 2020)) may face similar challenges related to allocative harms, and unequal 
distribution of benefits as applications of MI-technologies make their progress into their 
domains (Bayne and Parker, 2012; Reichstein et al., 2019). 

5. Shocks, cascading failures and attacks 
Machine intelligent technologies create numerous new complex interactions not only 
between humans and machines, as well as between machine intelligent systems 
(Rahwan et al., 2019), but also increasingly with ecosystems and the Earth system 
(Galaz, 2014; Markolf et al., 2018). These growing interactions between humans, 
machines and ecology could be viewed as complex adaptive systems (McPhearson et 
al., 2016). Such systems are susceptible to unexpected shocks, and cascades that develop 
endogenously, also known as “normal accidents” (Perrow, 2011). This implies that even 
if the components of the system are managed properly (say, a regional network of IoT-
connected farms), risks can ripple and amplify across network links (e.g. a regional food 
supply chain).  
 
Malicious external attacks can expose these endogenous vulnerabilities. Connectivity 
and flows of information are prerequisites for the operation of machine intelligent 
technologies in digital farming, forestry and aquaculture. For example, digital farming 
systems and applications of MI for “smart cities” rely on data transfer, sensor access to 
wireless and other communication networks, remote transmission and system actuation, 
typically in real time (West, 2018). Each of these can be disrupted intentionally and thus 
affect the operation of semi-automated farming systems (Cooper, 2015; Gupta et al., 
2020). As MI-enhanced technologies continue to play a larger role in agriculture, urban 
system management, and resource management, designing resilient infrastructures for 
them has been argued to have become increasingly difficult. Box 2 elaborates this issue 
in more detail.  

 

Box 2. Cyberattacks and how they propagate 
 
Using sensors and other technologies to create increasingly accurate models of 
farms and ecosystems can produce valuable information for management and 
monitoring. “Virtual farms,” based on data from sensors, can be analyzed with MI 
algorithms for meaningful insights from management strategies to yield 
predictions (Bronson and Knezevic, 2016). These analyses require considerable 
amounts of computational power, which is rarely housed on the farm itself. 
Instead, valuable information is often transmitted, stored, and interpreted offsite 
using cloud storage and data analytics, and can be susceptible to data breaches at 
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multiple stages (Chi et al., 2017; FAO and United Nations Environment 
Programme, 2020).  
 
The data and algorithms used in digital agriculture are also vulnerable to more 
traditional security risks. As recently as November of 2019, for example, a Chinese 
national who worked at Monsanto was indicted for economic espionage after being 
caught at the airport with copies of a software technology known as the “Nutrient 
Optimizer” (USDOJ 2019). This predictive algorithm is a critical component of an 
online platform, which collects, stores, and visualizes farming data from the field 
to increase productivity. While these productivity increases are important to seek 
out, it is critical to remember that using complex, remote, and potentially insecure 
technological networks can make valuable agricultural information available to 
nefarious actors around the globe. In the wrong hands, this information could have 
significant economic consequences, and the systemic risks of cybersecurity need to 
be managed effectively.  

6. Machine intelligent information pollution and misinformation 
 
MI-technologies not only facilitate information sharing and analysis to users in easily 
delineated sectors like farming and forestry but are increasingly affecting online 
conversations about climate and environmental issues in a media ecosystem that is 
become more heavily automated. The participatory aspects of social media give it a 
central role in shaping individual attitudes, feelings and behaviors (Williams et al., 
2015), and for social mobilization and protests (Steinert-Threlkeld et al., 2015). This 
new digital information landscape is however also affected by the abundant spread of 
misinformation, including hoaxes, conspiracy theories, click-bait headlines, and ‘junk 
science’ (Shao et al., 2018). 
 
Climate and environmental misinformation and disinformation campaigns have a long 
history, and they are particularly challenging in digital media for several reasons. First, 
climate and environmental issues are prone to polarization due to their connection to all 
aspects of society (say, ranging from dietary choices to tax policies), and to deeper 
differences in perception, values and ideologies (Ballew et al., 2019).  
 
The role of online media in general in diffusing and amplifying climate and 
environmental mis- and disinformation is getting increased attention (Treen et al., 
2020). To what extent such information has been (or could be) augmented through MI, 
is nonetheless poorly understood. MI-fueled information operations through the 
voluminous automated diffusion of climate misinformation through “social bots” 
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(Woolley, 2016); micro-targeting and search engine optimization (Bradshaw, 2019), 
and targeted uses of emotional content (Bakir and McStay, 2018); could in principle act 
as an effective amplifier of existing confusion and discontent (Jang and Hart, 2015; Shao 
et al., 2018; Woolley, 2016). The resulting polarization, mistrust in science and incorrect 
climate information could undermine climate action and crisis responses in detrimental 
ways, as illustrated by the voluminous spread of misinformation and conspiracy theories 
during the US wildfires in September 2020. 
 
Some early evidence suggests that semi-automated misinformation campaigns 
augmented through “social bots” have started to emerge during international 
environmental crises and high-profile international climate events. This includes reports 
about attacks in social media by “trollbots” targeting climate activist Greta Thunberg, 
and the diffusion of conspiracy theories during the Australian bushfires in 2019. 
However, none of these studies (Marlow et al., 2020; Weber et al., 2020) have been 
subject to peer-review, and should therefore be interpreted with care. As many other 
adversarial MI cases, content pollution and social bot detection are in an arms race that 
complicates the identification of automated accounts on social media (Ferrara et al., 
2016). 

7. Machine intelligence, efficiency and resilience 
Technological advances have historically played, and will continue to play, a key role 
as societies strive for increased control and productivity of ecosystems in both land- and 
seascapes (Rist et al., 2014). The use of new technologies in farming and other forms of 
extraction of natural resources such as sea food and biomass through e.g. robotics, 
predictive optimization algorithms, and the analysis of big data may very well lead to 
increased efficiency and productivity through e.g. temporal and site-specific farm 
management, reduced waste, and allowing autonomous activities such as seeding or 
weed control (Finger et al., 2019). While increased efficiency in resource use is not 
dangerous in and of itself, there are several potential downsides to deploying 
increasingly automated and autonomous technology in the context of natural resource 
management. The key issue is that optimizing system performance to maximize efficient 
generation of a small set of goods (say, a particular crop), is known to undermine system 
functioning and resilience over the long term (Holling and Meffe, 1996), which could 
lead to undesirable regime shifts that significantly and sometimes irreversibly change a 
given ecosystem (Rocha et al., 2015).  
 
Thus, for example, industrial agricultural landscapes around the world now generate 
high yields of few crop species, but has led to unintended declines in many other 
ecosystem services also valued by societies, including biodiversity, scenic beauty and 
climate or flood regulation (Foley et al., 2005). Biodiversity in particular provides many 
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functions directly relevant for the sustainable production of food, fuel and fiber, such as 
the decomposition of organic matter, pest control or pollination. Even when key species 
are maintained, declines in the diversity of crop and wild species reduce the resilience 
of ecosystems making them increasingly vulnerable to shocks such as a drought, or a 
newly introduced pest (Nyström et al., 2019). 
 
Applications of MI and increased automation could accelerate these trends. Since the 
economic benefits of automation and associated applications of MI seem to be the 
greatest for larger farms (Basso and Antle, 2020), investments in these technologies 
could create strong incentives for both larger and more simplified agricultural 
landscapes (Lajoie-O'Malley et al., 2020). Local farming strategies and knowledge are 
often developed over generations, and are not easily captured by data-driven approaches 
(Jiménez et al., 2016). Such simplification has been suggested to affect social 
relationships among people with the possible loss of local knowledge, which could lead 
to accelerated loss of ecosystems (Riechers et al., 2020; Šūmane et al., 2018), which 
could undermine the foreseen benefits created by the use of machine intelligent 
technologies. 

8. Implications for environmental governance, ethics and law 
 
The increased application of MI systems and associated technologies across critical 
sectors of the economy and public service provision has raised heightened interest in 
how best to manage the risks associated with these technological developments. It has 
been argued that technological solutions alone, including human-centered design 
solutions, cannot mitigate emerging risks from the growing application of MI 
(Gangadharan and Niklas, 2019). 
 
The development of ethical guidelines has represented the dominant approach proposed 
for the governance of MI systems. Over 200 such guidelines have been developed in 
recent years, focusing on key ethical principles such as transparency, explainability, 
robustness, security, safety, and accountability. Sector-specific guidelines are also 
emerging in areas such as medical technology and digital manufacturing, but there have 
been relatively few guidelines for areas related to sustainability. International 
organizations and the EU have expressed a commitment to responsible and trustworthy 
AI in the context of sustainable development (European Commission, 2020), but these 
are largely related to principles of non-discrimination, diversity, and inclusivity, rather 
than on responding to the specific dynamics between MI systems and sustainability. 
 
In addition, critics of the MI ethics approach have emphasized the limits of 
operationalizing fairness when setting up decision models, the reduced enforceability of 
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these guidelines, the practical limits of providing algorithmic explainability or 
transparency, and the lack of professional accountability mechanisms needed to ensure 
the consistent implementation of these principles (Haas et al., 2020; Mittelstadt et al., 
2018).  
 
Standards-making organizations have looked at ways to translate ethical principles into 
product and process standards that ensure the responsible development, deployment and 
monitoring of MI systems. Recent examples include: ISO/IEC TR 24028:2020 
‘Trustworthiness in Artificial Intelligence’; the IEEE ‘Ethics Certification Program for 
Autonomous and Intelligent Systems’; ISO/IEC 24028 ‘Bias in AI systems and AI aided 
decision-making’; or BS 8611:2016 ‘Robots and robotic devices: Guide to the ethical 
design and application of robots and robotic systems’. However, these initiatives focus 
mostly on organizational governance mechanisms and procedural guidance for 
managing known MI risks – such as transparency and accountability – rather than 
broader systemic considerations linked to the impact of these technologies on 
sustainability. In addition, these organizational procedures and considerations need to 
be further incorporated in emerging sectoral standards for smart farming, agricultural 
electronics or greenhouse gas management standards, such as ISO/TC207 - 
Environmental Standards or ISO/TC23 - Tractors and machinery for agriculture and 
forestry. Thus, systemic risk considerations pertaining to the complex dynamics 
between MI technologies, ecological and environmental safety, supply chain resilience 
and their wider distributional consequences for sustainability rarely feature in current 
standards packages. 
 
Proposals for regulating MI have also increased in recent years. These include either 
amendments to existing legal-regulatory frameworks in data protection, safety and/or 
cybersecurity, new regulations to protect consumers against algorithmic bias and 
provide transparency and accountability, or increased oversight powers for existing or 
new regulatory agencies (Erdélyi and Goldsmith, 2020). However, it has been shown 
that these regulatory proposals focus largely on individual risks (e.g. product safety 
regulations protecting the consumer), as opposed to systemic risks that characterize the 
complex human-machine-ecological systems described here (Black and Murray, 2019). 
 
The lack of adoption, enforcement and commitment to govern systemic sustainability 
risks created by MI becomes particularly problematic in the climate and environmental 
domain where strong regulatory and enforcement capacities cannot be taken for granted, 
and hence cannot be assumed to compensate for the lack robust and responsible 
governance of MI systems and technologies. 
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9. Conclusion 
 
Machine intelligence and automation could be gaining traction in sectors of fundamental 
importance for sustainability in the next decade. The driving forces behind the diffusion 
of these technologies are the result of both technological advances in IoT satellite 
technologies and increasing computational capacity, and increasing demands from 
society to better manage scarce natural resources, and understand the scope and impacts 
of rapid climate and environmental change.  
 
As we have discussed here, this progress could (and should) be matched with a growing 
recognition of not only opportunities, but also possible risks for sustainability. Many of 
the risks discussed here are tentative, and difficult to quantify with precision. System 
risks that evolve out of complexity and poorly understood system interactions between 
humans, machine and ecology are particularly challenging. Governing MI risks for 
sustainability are likely to require hybrid and highly adaptive approaches (Brass and 
Sowell, 2020) with the capacity to respond to changes in ecological systems, and 
advances in machine intelligent technologies. Such governance approaches should in 
similar ways as for other challenges characterized by complexity, bring together 
governmental and private actors, as well as self-regulatory and mandatory regulatory 
interventions to secure polycentric and flexible responses.  
 
Such new governance approaches need to acknowledge the complex features of 
ecosystems and their fundamental importance for human development, as well as 
possible negative distributional implications of increased applications of MI-
technologies. Investors, governments and the private sector should take these issues 
seriously as MI-augmented technologies are increasingly being promoted as a key 
solution to a turbulent climate future.  
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Supporting information 1. Methods and data for visualization in Figure 2A 
and Figure 2B. 

 
 
Figure 1A is based on data extracted from online sources. Step one included internet-based 
keywords search in English on Google, Google Scholar, and Microsoft Bing web search 
engines. The search encompassed five keywords categories (i.e., precision agriculture, 
forestry, marine, geography, and finance) that were used in various combinations; from a 
simple search including using only three keywords (e.g., one key word from each category) 
to using combination of keywords from three types of terms (Box 1). 
 
The searches in step one identified several detailed precision agriculture reports published 
by organizations such as Ag Funder, Finistere Ventures, Goldman Sachs, Tractica, United 
Nations and the European Commission (see list below). The research in step two was focused 
on detailed analysis of the information from these reports identified in step one, with a focus 
on identifying new companies and initiatives that were not identified through the searches 
from step one since these potentially contain sample bias due to searches being done in 
English.  
 
Furthermore, step one and two led to step three in which the study listed 339 companies. 
After composing the list, we used information available through company information 
available on Twitter and LinkedIn, and on a few occasions Facebook and Instagram accounts 
of examined companies, whenever available, and read their tweets and LinkedIn news feeds, 
if available, since January 1st 2015. Lastly, the authors inspected all 339 companies to 
differentiate which companies are working with machine learning and algorithms systems, 
which companies are developing software and precision data analytics, which companies are 
developing IoT systems that combine software and different machines at the same times, etc. 
In total 2,000 searches between July 2018 and February 2020 were done on Google, Google 
Scholar, and Microsoft Bing using combinations of the 56 keywords from three main 
categories (Box 1). 
 
 

Box 1. Search terms 
 
Precision agriculture-, forestry- and aquaculture-related keywords used: ‘precision 
agriculture’, ‘digital agriculture’, ‘aquaculture’, ‘maritech’, ‘smart agriculture’,  ‘sustainability 
farming’, ‘animal technologies’, ‘plant science’, ‘crop management’, ‘farm technologies’, 
‘indoor agriculture’, ‘site specific agriculture’, ‘decision agriculture’, ‘robot agriculture’, 
‘forestry’, ‘digital forestry’, ‘precision forestry’, ‘ag fintech’, ‘sensors’, ‘smart farm’, ‘imagery’, 
‘satellite’, ‘agtech’, ‘algorithms’, ‘coding’, ‘robotics’, ‘machine learning’, ‘ai’, ‘complexity’, 
‘startup’, and ‘resilience’.  
 
Geography-related keywords used: ‘European Union’, ‘United States of America’, ‘China’, 
‘India’, ‘Brazil’, ‘Russia’, ‘Africa’, ‘Europe’, ‘Latin America’, ‘North America’, ‘Asia’, 
’Middle East’, ‘Oceania’ and ‘Australia’.  
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Finance-related keywords used: ‘finance’, ‘investments’, ‘venture capital’, ‘angel investors’, 
‘capital’, ‘funds’, ‘equity’, ‘debt’, ‘impact investment’, ‘sustainability investment’, and 
‘business incubator’. 

 
Our research led us to identify 424 companies operating in digital agriculture, forestry, 
aquaculture and marine extraction sectors between July 2018 and February 2020. Based on 
a general sample of companies in these sectors, we selected a subset of companies that have 
an explicit application of big data analytics and MI. That subset was identified by looking 
through company profiles with a special emphasis on the type of technology being applied.  
 
It is important to mention that after we assembled the list of the companies we did a thorough 
review of companies in order to determine which companies are eligible for the survey. This 
inquiry led us to discard 37 companies which did not have any email contact details or could 
not be reached by phone after several attempts to inquire for their email address or had 
malfunctioning email addresses. Furthermore, we decided to discard additional 48 
organizations that did not fit the description of digital agriculture, forestry, aquaculture and 
marine extraction companies. The excluded organizations include universities, research 
institutes and cross-border research projects in the agriculture sector.  Our final selection 
includes 339 companies in total, including in the sectors digital agriculture (N=275), forestry 
(N=11), aquaculture and marine extraction sectors (N=53). 
 
The breadth of technologies developed by these corporations varies considerably, as listed 
in Supplementary Table 1. The classification is based on the classification system used by 
Finistere 2018 Agtech Investment Review, using publicly available information online (such 
as company websites or LinkedIn profiles). 
 

Supplementary Table 1. Selected companies and main product types 
 

 
Product type 

 
Number of 
companies 

% of all 
digital 

agriculture 
companies  

 
Product type 

 
Number of 
companies 

% of all 
digital 

forestry 
companies  

IoT 50 18% IoT 2 18% 

Biotech 4 2% Geospatial analysis 3 27% 

Drones 26 9% Robotics 1 9% 

Autonomous 
equipment and 

machinery 

18 7% Software 2 18% 

Fintech 4 2% Other/undefined 3 27% 

Digital agriculture Digital forestry 
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Geospatial 
analysis 

32 12% Sum 11 100% 

Robotics 22 8% 

Sensors 13 4% 
 

Software 35 13% 

Indoor 
agriculture tech 

12 4% 

Other/undefined 59 20% 

Sum 275 100% 

 
 
Digital aquaculture or marine resource extraction 
 

Product type Number of 
companies 

% of all digital 
aquaculture 
and marine 
extraction 
companies  

IoT Marine 1 2% 

IoT Aquaculture 5 10% 

Aquaculture 
software 

2 4% 

Marine drones 7 13% 

Marine 
equipment and  

machinery 

4 8% 

Marine 
geospatial 
analysis 

4 8% 

Marine robotics 11 21% 

Marine sensors 2 4% 
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Precision marine 
and aquaculture 

systems 

15 28% 

Other 2 4% 

Sum 53 100% 

 
 
Figure 2B builds on funding data extracted from the Crunchbase database. The data includes 
funding information (including angel investment, debt financing, grants, and other) about 
private and public companies by combining large investor network and community 
contributors, automated searches of the web and news publications for information, and 
quality control through machine learning methods (Dalle, Den Besten, and Menon 2017). 
The data has been used by others for other related research work (Marra et al. 2015; Marra, 
Antonelli, and Pozzi 2017). Each of 339 companies’ names shown in Figure 1 were searched 
in the database for the total funding amount and funding period data (2007-2019). Figure 1B 
only includes information for 52% of these companies (N=177), with missing funding 
information distributed across the selected sectors in the following way: digital farming: N= 
130 missing; digital forestry: 2 missing; Marine and Aquaculture: 30 missing. Additional 
information about the types of funding included in the data, can be found here. 
 
List of grey reports used for selection of companies 
 
Ag Funder. 2016. “Ag Tech Investing Report − 2016.” Accessed February 18, 2019. 

https://research.agfunder.com/2016/AgFunder-Agtech-Investing-Report-2016.pdf.  
Bain & Company. 2017. “Indian Farming’s Next Big Moment: Farming as a Service.” 

Accessed February 20, 2019. 
http://www2.bain.com/Images/REPORT_Indian_Farmings_Next_Big_Moment_-
_Farming_as_a_Service.pdf.  

De Clercq, Matthieu, Anshu Vats, and Alvaro Biel. 2018. “Agriculture 4.0: The Future of 
Farming Technology.” Oliver Wyman. Accessed November 5, 2019. 
https://www.worldgovernmentsummit.org/api/publications/document?id=95df8ac4-
e97c-6578-b2f8-ff0000a7ddb6  

European Parliament. “Precision agriculture – An opportunity for EU farmers.” Accessed 
November 5, 2019. 
https://www.europarl.europa.eu/RegData/etudes/note/join/2014/529049/IPOL-
AGRI_NT%282014%29529049_EN.pdf  

Finistere Ventures. 2018. “Finistere Ventures 2018 Agtech Investment Review.” Accessed 
November 12, 2019. 
https://files.pitchbook.com/website/files/pdf/Finistere_Ventures_2018_Agtech_Invest
ment_Review_xeO.pdf  

Goldman Sachs. 2016. “Precision Farming: Cheating Malthus with Digital Agriculture.” 
Accessed November 6, 2019. https://docdrop.org/static/drop-pdf/GSR_agriculture-
N1sH6.pdf  

https://paperpile.com/c/hXHPaz/sieA
https://paperpile.com/c/hXHPaz/GLVa+BWUk
https://paperpile.com/c/hXHPaz/GLVa+BWUk
https://support.crunchbase.com/hc/en-us/articles/115010458467-Glossary-of-Funding-Types
https://research.agfunder.com/2016/AgFunder-Agtech-Investing-Report-2016.pdf
http://www2.bain.com/Images/REPORT_Indian_Farmings_Next_Big_Moment_-_Farming_as_a_Service.pdf
http://www2.bain.com/Images/REPORT_Indian_Farmings_Next_Big_Moment_-_Farming_as_a_Service.pdf
https://www.worldgovernmentsummit.org/api/publications/document?id=95df8ac4-e97c-6578-b2f8-ff0000a7ddb6
https://www.worldgovernmentsummit.org/api/publications/document?id=95df8ac4-e97c-6578-b2f8-ff0000a7ddb6
https://www.europarl.europa.eu/RegData/etudes/note/join/2014/529049/IPOL-AGRI_NT%282014%29529049_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/note/join/2014/529049/IPOL-AGRI_NT%282014%29529049_EN.pdf
https://files.pitchbook.com/website/files/pdf/Finistere_Ventures_2018_Agtech_Investment_Review_xeO.pdf
https://files.pitchbook.com/website/files/pdf/Finistere_Ventures_2018_Agtech_Investment_Review_xeO.pdf
https://docdrop.org/static/drop-pdf/GSR_agriculture-N1sH6.pdf
https://docdrop.org/static/drop-pdf/GSR_agriculture-N1sH6.pdf
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International Telecommunications Union. 2019. “United Nations Activities on Artificial 
Intelligence (AI).” Accessed November 5, 2019. https://www.itu.int/dms_pub/itu-
s/opb/gen/S-GEN-UNACT-2019-1-PDF-E.pdf  

Organisation for Economic Co-operation and Development. 2016. “Is precision agriculture 
the start of a new revolution?” Accessed November 6, 2019. https://www.oecd-
ilibrary.org/agriculture-and-food/farm-management-practices-to-foster-green-
growth/is-precision-agriculture-the-start-of-a-new-revolution_9789264238657-8-en  

Tractica. 2019. “Agricultural Robots.” Accessed November 3, 2019. 
https://www.tractica.com/newsroom/press-releases/agricultural-robot-shipments-to-
reach-727000-units-annually-by-2025/  

Trendov, Nikola M., Samuel Varas, and Meng Zeng. 2019. “Digital Technologies in 
Agriculture and Rural Areas: Briefing Paper.” FAO. Accessed November 8, 2019. 
http://www.fao.org/3/ca4887en/ca4887en.pdf  

United States Studies Centre at University of Sydney. 2018. “Australian AgTech: 
Opportunities and challenges as seen from a US venture capital perspective.” Accessed 
November 12, 2019. http://finistere.com/wp-content/uploads/2018/10/Australian-
AgTech-Opportunities-and-challenges-as-seen-from-a-US-venture-capital-
perspective.pdf  

 
  

https://www.itu.int/dms_pub/itu-s/opb/gen/S-GEN-UNACT-2019-1-PDF-E.pdf
https://www.itu.int/dms_pub/itu-s/opb/gen/S-GEN-UNACT-2019-1-PDF-E.pdf
https://www.oecd-ilibrary.org/agriculture-and-food/farm-management-practices-to-foster-green-growth/is-precision-agriculture-the-start-of-a-new-revolution_9789264238657-8-en
https://www.oecd-ilibrary.org/agriculture-and-food/farm-management-practices-to-foster-green-growth/is-precision-agriculture-the-start-of-a-new-revolution_9789264238657-8-en
https://www.oecd-ilibrary.org/agriculture-and-food/farm-management-practices-to-foster-green-growth/is-precision-agriculture-the-start-of-a-new-revolution_9789264238657-8-en
https://www.tractica.com/newsroom/press-releases/agricultural-robot-shipments-to-reach-727000-units-annually-by-2025/
https://www.tractica.com/newsroom/press-releases/agricultural-robot-shipments-to-reach-727000-units-annually-by-2025/
http://www.fao.org/3/ca4887en/ca4887en.pdf
http://finistere.com/wp-content/uploads/2018/10/Australian-AgTech-Opportunities-and-challenges-as-seen-from-a-US-venture-capital-perspective.pdf
http://finistere.com/wp-content/uploads/2018/10/Australian-AgTech-Opportunities-and-challenges-as-seen-from-a-US-venture-capital-perspective.pdf
http://finistere.com/wp-content/uploads/2018/10/Australian-AgTech-Opportunities-and-challenges-as-seen-from-a-US-venture-capital-perspective.pdf
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Supporting information 2. Analysis of principles for “AI for Good” and 
“responsible AI” 

 
 
The analysis builds on the UK foundation Nesta’s “AI Governance Database” available 
online. The database includes metainformation about 255 governance initiatives related to 
artificial intelligence, including national plans, strategy documents and ethical principles. 
Each document was downloaded, and scanned for a strategic selection of keywords related 
to core standard ethical principles, and keywords normally associated with sustainability 
issues. 73 documents were not available, or assessed to be irrelevant for this study. We 
chose to also include a number of key missing documents: the ‘Ethics Guidelines for 
Trustworthy Artificial Intelligence (AI)’ prepared by the European Commmission’s High-
Level Expert Group on Artificial Intelligence (AI HLEG); Google’s Ethical AI principles; 
Intels’ ethical AI principles; and the The IEEE Global Initiative on Ethics of Autonomous 
and Intelligent Systems. Hence the data displayed in Figure 3 builds on the analysis of a 
total of 186 documents.  
 
The search terms include: 
 

1. Core ethical principles: transparency; accountability; bias (algorithms, allocative 
harms); sustainability (note: non-environmental sustainability, e.g. cybersecurity or 
other). 

2. Key sustainability issues: climate change, global warming, carbon budget, 
decarbonization, Paris Agreement; biodiversity, ecosystems, biosphere; agriculture, 
farming, farmers, forest, forestry; ocean, oceans, marine, fish, fisheries; 
sustainability, (note: environmental, ecological, sustainability, including Agenda 
2030, Sustainable Development Goals, SDGs.  

 
The coded datafile can be received by request from the authors.  
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Supporting information 3.  
Availability of data principles, policies, practices for selection of companies 

in Figure 2A, 2B. 
 

The extent to which algorithmic bias and potential allocative harms are issues for machine 
intelligent systems in digital farming, forestry and marine exploration and exploitation has 
remained unexplored. In 2020, we created and sent out a survey to all companies (N=339) 
identified for this study. The survey had 11 questions grouped in multiple choice and open-
ended question categories about applications of machine intelligence, issues around data 
privacy and cybersecurity, and transparency and explanability. The response deadline was 
set to 10th of March 2020, and postponed to 29th of May 2020 due to the covid-19 
pandemic. In total we received 32 responses, 9 rejected and 23 completed the survey out of 
339 companies. That is 9.4% response rate. As an alternative method to get an overview of 
the companies’ approach to data management and principles of responsible use, we chose 
to assess each company’s publicly available information on these topics.  
 
In total, 8 out of 339 companies did not have a functioning website, 285 of 339 had a 
website but no data principles, policies, practices publicly available. Hence only 46 out of 
339 (14%) had data principles, policies, practices publicly available. Out of these 46 
companies, only 1 company have signed data principles, and 1 provides publicly available 
data practices. The remaining 44 state in their privacy polices how they deal with personal 
data when someone uses their service. 
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