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The COVID-19 pandemic has exposed many existing inequali-
ties in the United States. The unprecedented impacts of the 
COVID-19 pandemic, including upsets to daily life, eco-

nomic loss and emotional distress, have fallen disproportionately on 
low-income populations and communities of colour1–4. These same 
groups have also faced greater exposure to COVID-19 through high 
public-contact jobs5 that often make social distancing difficult or 
impossible and higher rates of cases as a result1,2,6–8.

Access to nature is also unequally distributed in the United 
States, with vegetation and parks often less available in low-income 
neighbourhoods and communities of colour. We define ‘nature’ as 
greenness (or the total amount of vegetation, including trees, shrubs 
and grass) and urban parks; while these two metrics do not fully 
describe nature, they nonetheless capture two important elements 
of what is often identified as ‘nature’ in urban settings9,10. Many 
studies11–16 have shown persistent patterns of inequity in individual 
cities, groups of cities and nationwide for Normalized Difference 
Vegetation Index (NDVI) at the census-tract scale17. Thus, the com-
munities most impacted by COVID-19 may have the least access to 
nature. A negative association between COVID-19 case rates and 
greenness has been shown with county-level data in the United 
States18 but it is not known whether this effect holds when using 
finer spatial resolution data, nor whether park access has the same 
negative association with COVID-19 case rates.

Access to nature, including greenness and park proximity, has 
the potential to reduce some of the distress associated with the pan-
demic by improving mental health and providing safe spaces for 
socializing, physical activity and recreation19–21. We define green-
ness as the total volume of vegetation in an area, quantified using 
NDVI, which does not distinguish between different types such as 
trees, shrubs and lawns. Despite this drawback, NDVI is a widely 
used metric. Access to greenness (measured using NDVI) has been 

strongly linked—along with proximity to parks—to improvements 
in physical and mental health, including lower risk of mortality, 
lower odds of depression and lower rates of obesity, diabetes and 
cardiovascular disease22,23. Thus, inequity in nature access has the 
potential to translate into inequities in mental and physical health 
both during and beyond the pandemic.

In this study, we document the extent of these two ‘stacked’ ineq-
uities; that is, that low-income and majority people of colour (POC) 
communities have both more COVID-19 cases and less nature. We 
also explore whether there is an association between access to nature 
and COVID-19 incidence after accounting for income, race/ethnic-
ity and other potentially confounding variables. There are multiple 
mechanisms that could produce such an association. For instance, 
a lack of access to nature might not only deprive individuals of a 
much-needed mental health resource but may also actively interfere 
with the body’s ability to fight infection. Contact with nature appears 
to play an important role in our defences against viruses through 
boosting Natural Killer (NK) cells24,25. Reduced defence against 
viruses and other mechanisms could add burden to those already 
suffering from health inequities and could keep a higher propor-
tion of cases subclinical or asymptomatic in areas with more nature. 
This would result in a negative correlation between greenness and 
COVID-19 case rates that persists after accounting for sociodemo-
graphic characteristics and other factors that are also likely to be 
related to both greenness and COVID-19. While other mechanisms 
could also produce this pattern, a first step is to identify whether 
such a correlation exists. We emphasize that our data cannot distin-
guish between potential mechanisms nor infer causality but rather 
demonstrate an association among correlated variables.

Here, we quantify nature inequity across all census block groups 
in urbanized areas in the United States and link inequity in nature 
access to rates of COVID-19 cases for ZIP codes in 17 states using 
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two analyses. Specifically, we ask: (1) do low-income and predomi-
nantly POC communities have both higher COVID-19 case rates 
and less nature access (defined here by NDVI and park proximity); 
(2) is nature access related to COVID-19 case rates after accounting 
for income, race/ethnicity and other potentially confounding vari-
ables; and (3) does inequity in nature access persist in both green-
ness and park proximity when examined across the entire urbanized 
United States at resolutions finer than the census tract? We quantify 
nature access for both parks and greenness to ask whether inequity 
is systematic across all urbanized areas in the United States.

Results
We found that majority POC ZIP codes had both higher COVID-19  
case rates and less greenness (Fig. 1). As of 30 September 2020, 
majority POC ZIP codes had nearly twice as many COVID-19 cases 
per 100,000 people compared to majority-white ZIP codes (Fig. 1). 
Less-green ZIP codes also had higher rates of COVID-19 cases even 
after adjusting for differences in population density, race/ethnicity, 
income, time since the first recorded case, age and state (Fig. 2 and 
Extended Data Fig. 1). In a negative binomial mixed effect model 
of COVID-19 cases we found a 4.1% decrease in COVID-19 cases 
with a 0.1 increase in NDVI (Incidence Rate Ratio (IRR) 95% con-
fidence interval (CI): 0.9–6.8%). Unlike NDVI, park proximity was 
not significantly related to COVID-19 case rates when controlling 
for other variables (Fig. 2 and Supplementary Table 1).

We also found inequity in nature access at the US scale. Across 
all urbanized areas, block groups with a majority POC are less 
green (0.1 lower NDVI on average) and have fewer parks (0.5 fewer 
hectares on average). Similarly, low-income block groups are also 
less green (0.09 lower NDVI on average) and have fewer parks (3.6 
fewer ha on average; Fig. 3, Extended Data Fig. 2 and Supplementary 
Table 2). For context, a 0.1 magnitude difference in NDVI is roughly 
equivalent to a 1 s.d. difference in greenness in our sample: the s.d. 
in NDVI across all block groups is 0.15 and the average within-city 
s.d. is 0.08. In simultaneous autoregressive models (SAR) that 

account for spatial autocorrelation the proportion POC in a block 
group and median household income were both significant predic-
tors of NDVI and park proximity (Extended Data Fig. 2). Similarly, 
statistically significant differences in access to nature remain after 
accounting for population density (in both models of park proxim-
ity and greenness) and aridity (in the model of greenness).

Discussion
We show that COVID-19 has inflicted the greatest burden on com-
munities that also face widespread inequity in nature access. Using 
ZIP code-scale data, we show that communities with the least 
access to nature had the highest case rates of COVID-19. Using 
fine-resolution data from all urbanized areas across all states we also 
show that inequity in access to greenness and parks is widespread in 
the United States. Taken together, our results demonstrate that the 
pandemic has compounded the disadvantages in low-income areas 
and communities of colour already facing fewer acres of park avail-
able for recreation and less greenness.

We found an association between greenness and COVID-19 
case rates persisted after accounting for income, race/ethnicity 
and other confounding factors. While observational data such as 
ours cannot speak to causal relationships, previous findings from 
the literature suggest there are multiple possible mechanisms 
that could explain this statistical association. Greenness might 
affect COVID-19 case rates if it helps the body fight the virus 
once exposed, keeping a higher proportion of cases subclinical or 
asymptomatic. For example, NK cells play a key role in the body’s 
defence against viral infections, seeking out and attacking or ‘clear-
ing’ virus-infected cells24,25 and contact with nature appears to play 
an important role in boosting our NK defences26. Other possible 
explanations for the nature–COVID-19 association could include 
mediation pathways through higher air pollution and temperature 
which have been shown to positively relate to higher COVID-19 
case rates27,28 and are often higher in areas with less greenness 
and fewer trees29,30. It is also possible that having less green in a  
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Fig. 1 | COVID-19 case rates are related to both greenness and race/ethnicity. a, This analysis used reported COVID-19 cases at the ZIP code scale 
from 17 US states. b,c, Average NDVI values (b) and COVID-19 case rates per 100,000 people (c) across ZIP codes around Chicago, IL, as an example. 
d, Bar chart of greenness (NDVI) represented as quantiles and rates of COVID-19 showing a decline in cases with higher NDVI. e, Bar chart of greenness 
showing higher greenness in majority-white ZIP codes. f, COVID-19 case rates (per 100,000) showing lower rates of cases in majority-white ZIP codes. 
Error bars represent approximate 95% CIs.
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neighbourhood makes it more difficult to safely socialize in out-
door spaces. In places with less greenness and fewer available parks 
people may have chosen to socialize more frequently in indoor 
spaces. While municipal-wide restrictions on outdoor socializing 
may make this explanation less likely early in the pandemic, varia-
tion in how people socialize in outdoor spaces is possible after ini-
tial lockdowns were eased, particularly in private spaces such as 
yards and courtyards. While either, both or none of these explana-
tions might underlie the lower rates of COVID-19 in areas with 
greater access to nature, this finding raises the possibility that pop-
ulations that lack ready access to nature during the pandemic may 
not only be deprived of a much-needed mental health resource 
but may also be at greater risk of contracting COVID-19. Further 
research using patient-level data is needed to uncover the mecha-
nistic drivers behind the patterns we show in this work.

After adjusting for race/ethnicity, NDVI and age, other factors 
including income, population density and the number of days since 
the first recorded case were not significantly related to the number 
of cases. While the virus arrived later in lower-density areas, it also 
tended to hit a larger fraction of the population (Supplementary 
Table 3), which could explain why both population density and the 
time since the first recorded case were poor predictors of COVID-19  
case rates during the study period. Other work from Barcelona, 
Spain, has found a relationship between income and case rates1. 
One potential explanation for why we did not see this pattern is that 
exposure and transmission may be highest in occupations requiring 
more face-to-face interactions and these occupations may not be 
strongly correlated with income in the United States.

We found widespread evidence of inequity in access to nature 
across urbanized areas in the United States. These results may have 
cascading impacts, given that nature in urban settings has been 
associated with many human health benefits while also support-
ing other ecosystem services and biodiversity22,23,31,32. Previous work 
has shown inequity in the distribution of greenness and parks along 
income and racial lines both in the United States and abroad11–13,33. 
Within the United States, similar patterns have been found nation-
ally, but only for NDVI at the scale of census tracts17 and at finer 

spatial scales in individual cities or groups of cities12–15. Our results 
build on this previous work to show patterns of inequity are persis-
tent for both greenness and parks across the scale of all urbanized 
areas in the United States and at the fine spatial scale of census block 
groups. Placing our results in context, a difference of 0.1 incre-
ments of NDVI has been linked in other research to specific health 
impacts. For example, living with 0.1 increments lower NDVI 
around the home has been linked to 12% higher all-cause mortal-
ity34, 20.6 g lower birth weight in infants and higher likelihood of 
preterm birth35, 10% higher odds of poor self-reported health, lower 
neighbourhood satisfaction and social capital36 and a 39% decrease 
in odds of moderately vigorous physical activity in children37. 
Similarly, the area of available green space has also been linked to 
health; pregnant women living in neighbourhoods without a green 
space larger than 0.5 ha within 300 m are 13% more likely to report 
depressive symptoms38. Living closer to larger parks or more total 
area of parks has been associated with less stress39, more physical 
activity40 and lower odds for cardiometabolic disease41. These results 
suggest that differences in access to greenness and parks of a similar 
magnitude as shown here have the potential to impact a range of 
physical and mental health outcomes for low-income populations 
and communities of colour.

Our results demonstrate that inequity in nature access has impli-
cations for mental health and social interactions during a period of 
profound social and economic upheaval and mental health distress. 
In the short term, actions to overcome barriers to nature access 
during the pandemic—such as keeping urban parks in low-income 
neighbourhoods and communities of colour open, safe and acces-
sible—could help to relieve some of the distress associated with 
the pandemic. As vaccination rates increase and the acute phase of 
the pandemic begins to wane, resuming programmes such as free 
public transportation to nearby parks could become an increas-
ingly safe option to help underserved communities to access nature. 
Recognition of the public health implications of nature inequity 
could help to reframe urban nature as critical infrastructure, pro-
viding justification for sustaining and increasing funding to public 
greening programmes. Over the long term, actions taken to redress 
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inequity through park creation and greening interventions could 
have substantial broader public health value beyond the pandemic.

Methods
We combined spatially explicit data on nature access, sociodemographic 
characteristics and COVID-19 case rates. We conducted two separate analyses 
at separate spatial scales, both limited to urban areas. In the first, we combined 
COVID-19 data with nature access and sociodemographic data at the ZIP code 
scale across 17 states to ask whether communities with the highest COVID-19 case 
rates also have less access to nature. In the second analysis, we related nature access 
with sociodemographic data across all 486 urbanized areas in the United States at 
the block group scale to explore US-wide patterns of nature inequity.

Data. Study extent. For the COVID-19 analysis, the availability of fine-scale case 
data limited the study sites to 17 states that provide publicly accessible statewide 
data at the ZIP code scale. While individual counties also publish COVID-19 
case data at the ZIP code scale, the timelines, systems and formats for reporting 
and publishing these data are variable and inconsistent, and reconciling these 
differences was beyond the scope of this analysis. We limited our analysis to the 
ZIP code scale because the alternative county scale is large enough to contain 
substantial heterogeneity in both greenness and sociodemographic characteristics 
which could obscure relationships among these variables. For example, in the 17 
states we included in our analysis, counties contain an average of six ZIP codes 

(ranging from 1 to 162). Comparing ZIP codes within the same county, the average 
difference in median income between the ZIP code with the lowest and highest 
median incomes is US$27,404. Likewise, the average difference in the proportion 
of POC is 20.6% and the average difference in greenness is 0.12. We limited our 
analyses to ZIP codes that contain centroids (that is, geographic centres) within 
either urbanized areas (>50,000 people) or urban clusters (>20,000 people) as 
defined by the US Census Bureau. We also removed 66 ZIP codes with a median 
age value of 0, as well as 382 ZIP codes with a median income value of 0.  
The remaining dataset contained 2,652 urban ZIP codes across the 17 states  
in our analysis.

For the nature-equity analysis, we considered US Census block groups across 
all 486 urbanized areas (excluding urban clusters) in the United States (excluding 
Puerto Rico), including 142,325 block groups and 5,197 incorporated cities. Each 
state was represented by at least one urban area.

COVID-19 data. We compiled publicly available COVID-19 case data at the ZIP 
code scale from individual state department of health websites on 1 October 
2020, including data up to between 1 and 30 September 2020 for all states 
(Supplementary Table 3). We considered only reported cases of COVID-19 in the 
earlier phases of the pandemic (March through September) because some states, 
such as New Jersey, ceased to update their websites with new ZIP code-scale data 
beyond September. We were not able to obtain locally specific data quantifying the 
variation in rates of testing among different demographic groups. Evidence from 
some states (for example, Illinois; Supplementary Table 3) suggests that minority 
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groups were being tested at much lower rates than whites, particularly in the early 
phases of the pandemic. These data would probably have strengthened our  
results, since we found that POC-majority ZIP codes have both higher case rates 
and less greenness.

We compared COVID-19 case rates to nature access and sociodemographic 
variables using data described below. We calculated case rates as the cumulative 
number of cases per 100,000 people for each ZIP code using the total population 
for each ZIP Code Tabulation Area (ZCTA) from the American Community 
Survey (ACS) 2018. ZCTAs were designed to represent ZIP code routes as 
two-dimensional areas and while there are minor discrepancies in some  
places they are not common in the urban areas included in this analysis42.  
We also calculated the total days since the first recorded case (available only at 
the county scale) for each ZIP code, using data from the New York Times US 
Coronavirus Database43.

Nature access data. We used two metrics to quantify inequity in nature access: the 
amount of greenness and proximity to parks. We calculated these two metrics at 
the level of US Census block groups for nature inequity analyses and ZIP codes 
for COVID-19 analyses. Greenness was quantified using NDVI, which measures 
the reflectance of green vegetation and is linked to the amount, health and leaf 
characteristics of vegetation, with unitless values that vary from −1 to 1. Values 
between 0.2 and 1 vary from sparse to heavily vegetated and values close to or 
below zero represent other types of land cover such as impervious cover, water, 
clouds or snow. NDVI does not distinguish between different types of vegetation 
such as between trees and shrubs and, while NDVI is often highly correlated with 
tree canopy cover, our dataset crosses many ecoregions including arid regions 
where tree cover is often sparse and NDVI is less strongly linked to tree canopy. 
Average NDVI values were calculated across each block group (nature-equity 
analysis) or ZCTA (COVID-19 analysis). Calculated in this way, NDVI does not 
distinguish between publicly accessible greenness and green areas on private 
property such as residential yards. Thus, NDVI values for ZIP codes and block 
groups represent greenness that people can access directly, greenness that is visible 
along streets but not necessarily accessible and greenness that is nearby but neither 
visible nor accessible (such as in private backyards). NDVI data were derived 
from Landsat imagery and processed using Google Earth Engine, filtering images 
from 1 January 2017 to 31 December 2018 to correspond most closely to the time 
period in which socio-economic and sociodemographic data were collected. To 
account for broad geographic patterns in NDVI, which varies at regional scales 
based on climate and aridity, we included the Global Aridity Index in our model 
for NDVI inequity. This publicly available dataset represents the ratio between 
precipitation and vegetation water demand, where higher values represent more 
humid conditions44.

To measure park proximity, we generated a database of publicly accessible 
parks in the United States that is as comprehensive as possible by combining four 
publicly available nationwide datasets. These datasets together included 337,441 
parks across the entire United States, 143,228 of which are contained within the 
486 urbanized areas in the United States (Trust for Public Land ParkServe, US 
Protected Areas Database, National Conservation Easement Database and ESRI 
Parks; Supplementary Table 4). We did not exclude parks below a size threshold, 
nor did we filter parks based on characteristics such as amount of greenness or 
recreation type. The size of parks within urbanized areas varied from 0.001 to 
8,720 ha and includes small municipal parks that may have relatively little nature 
if their primary function is to provide sports facilities such as basketball courts, 
playgrounds or other types of recreation that typically require large paved areas.

Park proximity was calculated as the total acres of park within 1,000 m of the 
centroid of census blocks. This distance corresponds roughly to a 10 min walk, a 
common metric used by parks advocates and for measuring park accessibility45,46. 
For both ZIP codes and block groups, population-weighted averages were taken of 
block-level park proximity to derive a park proximity value for each ZIP code and 
block group. These population-weighted estimates were calculated to reduce the 
effect of areas with high park proximity where very few people live.

Sociodemographic data. Socio-economic and sociodemographic data were obtained 
from the US Census Bureau 2014–2018 ACS 5-year estimates47, which summarize 
data collected from 1 January 2014 to 31 December 2018. These data were collected 
for all block groups with their centroid within US urbanized areas (nature inequity 
analysis) and for ZCTA within the 17 states that report COVID-19 data at the ZIP 
code scale (COVID-19 analysis). Variables included median household income 
(total gross income before taxes during the past 12 months), the number of white 
people in a block group or ZCTA, median age and total population (used to derive 
population density and the proportion of POC in the block group or ZCTA).

Statistical analyses. We conducted two analyses at different spatial scales. In the 
first, we analysed COVID-19 rates using data from 17 states at the ZIP code scale 
using a negative binomial generalized linear mixed effects model. In the second, 
we quantified nature inequity in all urbanized areas in the United States at the 
block group scale. In this analysis we used SAR models to relate NDVI and park 
proximity to sociodemographic factors. All analyses were performed in R v.4.02 
(ref. 48). SARs were performed using the package spdep (ref. 49) and negative 
binomial mixed effects models were performed using the package lme4 (ref. 50).

COVID-19. We analysed COVID-19 case rates by ZIP code using a negative 
binomial generalized linear mixed effects model51. A single full model related 
COVID-19 case rates in each ZIP code to fixed effects for NDVI, park proximity, 
the proportion of white people, median income, population density, median age 
and the total number of days since the first recorded case (county scale) (Fig. 2 
and Supplementary Table 1). We included state as a random effect to account for 
the non-independence of data from the same state, which could occur because 
of processes we are not capturing with available data, including differences in 
the timing of public policy responses such as lockdowns or mask mandates51. All 
explanatory variables were centred and scaled. To quantify the impact of a change 
in NDVI, we calculated the IRR by fitting an additional model using raw and 
unscaled NDVI multiplied by 10 (all other variables scaled). The IRR and 95% CIs 
estimates how a 0.1 increment of change in NDVI affects COVID-19 case rates52. 
We used the Variance Inflation Factor and Pearson correlation coefficients to 
diagnose potential multicollinearity among explanatory variables (Supplementary 
Tables 1 and 5).

Model validation. The negative binomial mixed effects model fits the data structure 
well, providing an appropriate error structure for overdispersed count data. Two 
issues not well addressed through this model were spatial autocorrelation and 
potential endogeneity of regressors. Therefore, we built two additional models to 
validate the results of the negative binomial mixed effects model. In the first, we 
confirmed the presence of spatial autocorrelation (Moran’s I = 0.37, P < 0.0001) 
and we used a SAR model to adjust for the presence of spatial autocorrelation. We 
used the queen criteria to build the neighbours matrix and model selection with 
Akaike information criterion (AIC) to compare three potential structures for where 
the spatial autoregressive process is believed to occur. These potential structures 
include: a spatial error model, where spatial dependence is assumed to occur in the 
error term; a spatial lag model, where spatial dependence is assumed to occur in 
the response variable; and a mixed or Durbin model, where spatial dependence is 
assumed to influence both the response and explanatory variables (Supplementary 
Tables 6 and 7)53.

To address the potential for endogeneity between COVID-19 cases, NDVI 
and parks, we used Instrument Variable (IV) regression implemented using the 
two-stage least squares method54. Endogeneity could occur if an omitted variable, 
such as community investment or regulatory salience, were related to both 
COVID-19 cases (through health care investment, for example) and NDVI or 
park access (through community investment in green infrastructure, for example) 
within communities. In the IV model, we used Built Up Intensity55 and the Aridity 
Index as instrument variables for NDVI. Both of these variables are correlated 
with NDVI but are less likely to be correlated with COVID-19 cases or underlying 
omitted variables such as regulatory salience or community investment in health 
and green infrastructure. Two-stage least squares IV regression was conducted 
using the R package AER (Supplementary Table 8)54. These model validation 
steps confirm the basic relationships between NDVI, park access, proportion of 
white people in a ZIP code and COVID-19 cases, while also accounting for issues 
related to the spatially structured and observational nature of our data. Given the 
nature and structure of our data, model coefficients and the magnitude of effects 
are best interpreted using the negative binomial mixed effects model (Fig. 2 and 
Supplementary Table 1).

Nature inequity. To evaluate the relationship between nature access and 
sociodemographic variables, we built two models and analysed park proximity and 
NDVI separately. Both models included median income, the proportion of white 
people and the population density in the block group as covariates and the aridity 
index was also included in the NDVI model. We used SAR models to account 
for spatial autocorrelation. At the block group scale, models for NDVI (Moran’s 
I = 0.64, P < 0.001) and park proximity (Moran’s I = 0.62, P < 0.001) models both 
contained evidence of spatial autocorrelation. We used queen criteria for the 
neighbourhood matrix and model selection with AIC to compare a spatial error 
model and a spatial lag model. We did not include a mixed or Durbin model for 
nature equity due to issues with model convergence (Supplementary Table 6)53.

Data availability
Data used in this paper are available at https://www.sfei.org/data/
nature-equity-covid-2021.

Code availability
Code to replicate all results in this paper is available at https://www.sfei.org/data/
nature-equity-covid-2021.
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Extended Data Fig. 1 | Predicted values for cases of COVID-19 across 15 states. Predicted values for cases of COVID-19 per 100,000 people as a function 
of NDVI for ZIP codes with a low (20%), medium (50%), and high (80%) proportion people of colour (POC) across 15 states. Results for an additional 
two states (Illinois and Pennsylvania) are presented in the main body text (see Fig. 2). Predicted values are taken from a negative binomial mixed effects 
model with State as a random effect (Fig. 2., Supplementary Table 1), with 95% confidence intervals.
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Extended Data Fig. 2 | Coefficient values from SaR models of nature inequity. Modelled coefficient values from SAR models of nature inequity, including 
models of a, park proximity (ha), and b, greenness (NDVI) with including variables for the percent white residents, median income, population density, and 
aridity (NDVI model only) in 142,325 block groups across 486 urbanized areas. Coefficient values are represented as dots, bars represent 95% confidence 
intervals, and significant variables are shown in red. Confidence intervals in panel b are too small to be adequately represented.
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