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Abstract  24 

Urban nature can alleviate distress and provide space for safe recreation during the 25 

COVID-19 pandemic. However, nature is often less available in low-income and communities of 26 

color—the same communities hardest hit by COVID-19. We quantified nature inequality across 27 

all urbanized areas in the US and linked nature access to COVID-19 case rates for ZIP Codes in 28 

17 states. Areas with majority persons of color had both higher case rates and less greenness. 29 

Furthermore, when controlling for socio-demographic variables, an increase of 0.1 in 30 

Normalized Difference Vegetation Index (NDVI) was associated with a 4.1% decrease in 31 

COVID-19 incidence rates (95% confidence interval: 0.9-6.8%). Across the US, block groups 32 

with lower-income and majority persons of color are less green and have fewer parks. Thus, 33 

communities most impacted by COVID-19 also have the least nature nearby. Given urban nature 34 

is associated with both human health and biodiversity, these results have far-reaching 35 

implications both during and beyond the pandemic.   36 

 37 

Introduction  38 

The COVID-19 pandemic has exposed many existing inequalities in the US. The 39 

unprecedented impacts of the COVID-19 pandemic, including upsets to daily life, economic loss, 40 

and emotional distress, have fallen disproportionately on low-income populations and 41 

communities of color1–4. These same groups have also faced greater exposure to COVID-19 42 

through high public-contact jobs5 that often make social distancing difficult or impossible, and 43 

higher rates of cases as a result2,3,6–9.  44 

Access to nature is also unequally distributed in the US, with vegetation and parks often 45 

less available in low-income neighborhoods and communities of color. Many studies10–15 have 46 



shown persistent patterns of inequality in individual cities, groups of cities, and nationwide for 47 

Normalized Difference Vegetation Index (NDVI) at the census-tract scale16. Thus, the 48 

communities most impacted by COVID-19 may have the least access to nature. A negative 49 

association between COVID-19 case rate and greenness has been shown with county-level data 50 

in the United States17, but it is not known whether this effect holds when using finer spatial 51 

resolution data, nor whether park access has the same negative association with COVID-19 case 52 

rate. 53 

  Nature has the potential to reduce some of the distress associated with the pandemic by 54 

improving mental health and providing safe spaces for socializing, physical activity, and 55 

recreation18–20. Access to greenness (defined here as the total volume of vegetation in an area, 56 

quantified using NDVI) and parks has been tied to  physical and mental health, including lower 57 

risk of mortality, lower odds of depression, and lower rates of obesity and chronic diseases such 58 

as diabetes and cardiovascular disease21–23. Thus, inequalities in nature access have the potential 59 

to translate into inequities in mental and physical health both during and beyond the pandemic.  60 

In this study we document the extent of these two, “stacked” inequalities; that is, that low 61 

income and majority people of color (POC) communities have both more COVID-19 cases and 62 

less nature. We also explore whether there is an association between access to nature and 63 

COVID-19 incidence after accounting for income, race/ethnicity, and other potentially 64 

confounding variables. There are multiple mechanisms that could produce such an association. 65 

For instance, a lack of access to nature might not only deprive individuals of a much-needed 66 

mental health resource but may also actively interfere with the body’s ability to fight infection. 67 

Contact with nature appears to play an important role in our defenses against viruses though 68 

boosting Natural Killer (NK) cells24,25. This and other mechanisms could keep a higher 69 



proportion of cases subclinical or asymptomatic in areas with more nature. This would result in a 70 

negative correlation between greenness and COVID-19 case rates that persists after accounting 71 

for socio-demographic characteristics and other factors that are also likely to be related to both 72 

greenness and COVID-19. While other mechanisms could also produce this pattern, a first step is 73 

to identify whether such a correlation exists.   74 

Here, we quantify nature inequality across all census block groups in urbanized areas in 75 

the US and link inequality in nature access to rates of COVID-19 cases for ZIP Codes in 17 76 

states. Specifically, we ask: 1) Do low-income and predominantly POC communities have both 77 

higher COVID-19 case rates and less nature access (defined here by NDVI and park proximity), 78 

2) Is nature access related to COVID-19 case rates after accounting for income, race/ethnicity, 79 

and other potentially confounding variables, and 3) Do inequalities in nature access persist when 80 

examined at resolutions finer than the census tract? We quantify nature access for both parks and 81 

greenness in order to ask whether inequality is systematic across all urbanized areas in the US.  82 

 83 

Results 84 

We found that majority POC ZIP Codes had both higher COVID-19 case rates and less 85 

greenness (Fig. 1). As of September 30, 2020, majority POC ZIP Codes had nearly twice as 86 

many COVID-19 cases per 100,000 people compared to white majority ZIP Codes (Fig. 1). Less 87 

green ZIP Codes also had higher rates of COVID-19 cases even after controlling for differences 88 

in population density, race/ethnicity, income, time since the first recorded case, age, and state 89 

(Fig. 2). In a negative binomial mixed effect model of COVID-19 cases, we found a 4.1% 90 

decrease in COVID-19 cases with a 0.1 increase in NDVI (Incidence Rate Ratio 95% CI: 0.9 - 91 

6.8%). Unlike NDVI, park proximity was not significantly related to COVID-19 case rates when 92 



controlling for other variables (Fig. 2). We also found that when controlling for race/ethnicity, 93 

NDVI, and age, other factors including income, population density, and the number of days since 94 

the first recorded case were not significantly related to the number of cases. While the virus 95 

arrived later in lower-density areas, it also tended to hit a larger fraction of the population 96 

(Extended Data Table 1), which could explain why both population density and the time since 97 

the first recorded case were poor predictors of COVID-19 case rates during the study period. 98 

We also found inequality in nature access at the US scale. Across all urbanized areas, 99 

block groups with a majority POC are less green (0.1 lower NDVI on average) and have fewer 100 

parks (0.5 fewer hectares on average). Similarly, low-income block groups are also less green 101 

(0.09 lower NDVI on average) and have fewer parks (3.6 fewer ha on average, Fig. 3, Extended 102 

Data Table 2). For context, a 0.1 magnitude difference in NDVI is roughly equivalent to a one 103 

standard deviation (SD) difference in greenness in our sample: the SD in NDVI across all block 104 

groups is 0.15, and the average within-city SD is 0.08. In simultaneous autoregressive models 105 

(SAR) that account for spatial autocorrelation, the proportion white people in a block group and 106 

median household income were both significant predictors of NDVI and park proximity 107 

(Extended Data Fig. 1). Similarly, statistically significant differences in access to nature remain 108 

after accounting for population density (in both models of park proximity and greenness) and 109 

aridity (in the model of greenness).  110 

 111 

Discussion 112 

Taken together, our results demonstrate that COVID-19 has inflicted the greatest burden 113 

on communities that also face widespread inequity in nature access. These results have 114 

potentially important implications for how communities and individuals manage mental health 115 



and social interactions during a pandemic where socializing, recreation, and physical activity 116 

with others are most safely conducted in outdoor spaces.   117 

We found an association between greenness and COVID-19 case rates after accounting 118 

for income, race/ethnicity, and other confounding factors. While observational data such as ours 119 

cannot speak to causal relationships, previous findings from the literature suggest possible 120 

mechanisms that could explain this statistical association. Greenness might affect COVID-19 121 

case rates if it helps the body fight the virus once exposed, keeping a higher proportion of cases 122 

subclinical or asymptomatic. Natural Killer (NK) cells play a key role in the body’s defense 123 

against viral infections, seeking out and attacking or “clearing” virus-infected cells24,25. Contact 124 

with nature appears to play an important role in boosting our NK defenses: two two-hour forest 125 

walks on consecutive days increase the number and activity of anti-cancer NK cells by 50 and 126 

56%, respectively, and activity remained significantly boosted even a month after returning to 127 

urban life—23% higher than before the walks; by contrast, urban walks had no such effect26. 128 

Another possible explanation for the nature-COVID-19 association is that having less green in a 129 

neighborhood makes it more difficult to safely socialize in outdoor spaces. While either, both, or 130 

none of these explanations might underlie the lower rates of COVID-19 in areas with greater 131 

access to nature, this finding raises the possibility that populations that lack ready access to 132 

nature during the pandemic may not only be deprived of a much needed mental health resource 133 

but may also be at greater risk of contracting COVID-19. Further research using patient-level 134 

data is needed to uncover the mechanistic drivers behind the patterns we show in this work.  135 

We found widespread evidence of inequality in access to nature across urbanized areas in 136 

the US. These results may have cascading impacts, given nature in urban settings has been 137 

associated with many human health benefits while also supporting other ecosystem services and 138 



biodiversity21,22,27–29. These patterns are consistent with other studies that have shown inequality 139 

in access to parks and greenness10,13,15,16,30,31, and here, we show nature inequality patterns at a 140 

finer resolution than has been shown previously in the US. Placing our results in context, a 141 

difference of 0.1 increments of NDVI has been linked in other research to specific health 142 

impacts. For example, living with 0.1 increments lower NDVI around the home has been linked 143 

to 12% higher all-cause mortality32, 20.6 g lower birth weight in infants and higher likelihood of 144 

preterm birth33, 10% higher odds of poor self-reported health, lower neighborhood satisfaction 145 

and social capital34, and a 39% decrease in odds of moderately vigorous physical activity in 146 

children35. Similarly, the area of available greenspace has also been linked to health; pregnant 147 

women living in neighborhoods without a greenspace larger than 0.5 ha within 300 m are 13% 148 

more likely to report depressive symptoms36, and living closer to larger parks or more total area 149 

of parks has been associated with less stress37, more physical activity38, and lower odds cardio-150 

metabolic disease39. These results suggest that differences in access to greenness and parks of a 151 

similar magnitude as shown here have the potential to impact a range of physical and mental 152 

health outcomes for low-income populations and communities of color.  153 

We show that the pandemic has compounded the disadvantages in low-income areas and 154 

communities of color already facing fewer acres of park available for recreation and less 155 

greenness. Our results suggest that inequity in nature access has potential public health 156 

implications during a period of profound social and economic upheaval and mental health 157 

distress. In the short term, actions to overcome barriers to nature access during the pandemic, 158 

such as keeping urban parks in low-income neighborhoods and communities of color open, safe, 159 

and accessible could help to relieve some of the distress associated with the pandemic. Over the 160 



longer term, actions taken to redress inequity through park creation and greening interventions 161 

could have substantial broader public health value beyond the pandemic.  162 

 163 

Methods  164 

We combined spatially explicit data on nature access, socio-demographic characteristics, 165 

and COVID-19 case rates. We conducted two separate analyses at separate spatial scales, both 166 

limited to urban areas. In the first, we combined COVID-19 data with nature access and socio-167 

demographic data at the ZIP Code scale across 17 states to ask whether communities with the 168 

highest COVID-19 case rates also have less access to nature. In the second analysis, we related 169 

nature access with socio-demographic data across all 486 Urbanized Areas in the US at the block 170 

group scale to explore US-wide patterns of nature inequality.  171 

 172 

Data. Study extent. For the COVID-19 analysis, the availability of fine-scale case data limited 173 

the study sites to 17 states that provide publicly accessible state-wide data at the ZIP Code scale. 174 

While individual counties also publish COVID-19 case data at the ZIP Code scale, the timelines, 175 

systems, and formats for reporting and publishing these data are variable and inconsistent, and 176 

reconciling these differences were beyond the scope of this analysis. We limited our analysis to 177 

the ZIP Code scale because the alternative county scale is large enough to contain significant 178 

heterogeneity in both greenness and socio-demographic characteristics which could obscure 179 

relationships among these variables. We limited our analyses to ZIP Codes that contain centroids 180 

(i.e., geographic center) within either Urbanized Areas (greater than 50,000 people) or Urban 181 

Clusters (greater than 20,000 people) as defined by the US Census Bureau. We also removed 66 182 



ZIP Codes with a median age value of 0, as well as 382 Zip Codes with a median income value 183 

of 0. The remaining dataset contained 2,652 urban ZIP Codes across the 17 states in our analysis.  184 

For the nature equity analysis, we considered US Census block groups across all 486 185 

urbanized areas (excluding urban clusters) in the US (excluding Puerto Rico), including 142,325 186 

block groups and 5,197 incorporated cities. Each state was represented by at least one urban area. 187 

 188 

COVID-19 data. We compiled publicly available COVID-19 case data at the ZIP Code scale 189 

from individual state department of health websites on October 1, 2020, including data up to 190 

between September 1 and 30, 2020 for all states (Extended Data Table 1). We considered only 191 

reported cases of COVID-19 in the earlier phases of the pandemic (March through September), 192 

because some states, such as New Jersey, ceased to update their websites with new ZIP Code-193 

scale data beyond September. We were not able to obtain locally specific data quantifying the 194 

variation in rates of testing among different demographic groups. Evidence from some states 195 

(e.g., Illinois, see Extended Data Table 1) suggests that minority groups were being tested at 196 

much lower rates than whites, particularly in the early phases of the pandemic. These data would 197 

likely have strengthened our results, since we found that POC majority ZIP Codes have both 198 

higher case rates and less greenness.  199 

We compared COVID-19 case rates to nature access and socio-demographic variables 200 

using data described below. We calculated case rates as the cumulative number of cases per 201 

100,000 people for each ZIP Code using the total population for each ZIP Code Tabulation Area 202 

(ZCTA) from the American Community Survey (ACS) 2018. ZCTAs were designed to represent 203 

ZIP Code routes as two dimensional areas, and while there are minor discrepancies in some 204 

places, they are not common in the urban areas included in this analysis40. We also calculated the 205 



total days since the first recorded case (available only at the county scale) for each ZIP Code, 206 

using data from the New York Times US Coronavirus Database41.  207 

 208 

Nature access data. To quantify inequality in nature access, we used to metrics to quantify 209 

nature access: the amount of greenness and proximity to parks. We calculated these two metrics 210 

at the level of US Census block groups for nature inequity analyses and ZIP Codes for COVID-211 

19 analyses. Greenness was quantified using NDVI, which measures the reflectance of green 212 

vegetation, and is linked to the amount, health, and leaf characteristics of vegetation, with 213 

unitless values that vary from -1 to 1. Values between 0.2 and 1 vary from sparse to heavily 214 

vegetated, and values close to or below zero represent other types of land cover such as 215 

impervious cover, water, clouds, or snow. Average NDVI values were calculated across each 216 

block group (nature equity analysis) or ZIP Code Tabulation Area (ZCTA) (COVID-19 217 

analysis). NDVI data was derived from Landsat imagery and processed using Google Earth 218 

Engine, filtering images from 1/1/2017 to 12/31/2018 to correspond most closely to the time 219 

period in which socio-economic and demographic data was collected. In order to account for 220 

broad geographic patterns in NDVI, which varies at regional scales based on climate and aridity, 221 

we included the Global Aridity Index in our model for NDVI inequity. This publicly available 222 

dataset represents the ratio between precipitation and vegetation water demand, where higher 223 

values represent more humid conditions42.    224 

To measure park proximity, we generated a database of publicly accessible parks in the 225 

US that is as comprehensive as possible by combining four publicly available nationwide 226 

datasets. These datasets together included 337,441 parks across the entire US, 143,228 of which 227 

are contained within the 486 urbanized areas in the US (Trust for Public Land ParkServe, US 228 



Protected Areas Database, National Conservation Easement Database, and ESRI Parks, see 229 

Extended Data Table 4). We did not exclude parks below a size threshold, nor did we filter parks 230 

based on characteristics such as amount of greenness or recreation type. Therefore, our dataset 231 

includes small municipal parks that may have relatively little nature if their primary function is 232 

to provide sports facilities such as basketball courts, playgrounds, or other types of recreation 233 

that typically require large impervious surfaces.  234 

Park proximity was calculated as the total acres of park within 1,000 m of the centroid of 235 

census blocks. This distance corresponds roughly to a 10 minute walk, a common metric used by 236 

parks advocates and for measuring park accessibility43,44. For both ZIP Codes and block groups, 237 

population-weighted averages were taken of block-level park proximity to derive a park 238 

proximity value for each ZIP Code and block group. These population-weighted estimates were 239 

calculated to reduce the effect of areas with high park proximity where very few people live.  240 

 241 

Socio-demographic data. Socio-economic and demographic data were obtained from the US 242 

Census Bureau 2014-2018 American Community Survey 5-year estimates45, which summarize 243 

data collected from 1/1/2014 to 12/31/2018. These data were collected for all block groups with 244 

their centroid within US urbanized areas (nature inequality analysis) and for Zip Code 245 

Tabulation Areas (ZCTA) within the 17 states that report COVID-19 data at the ZIP Code scale 246 

(COVID-19 analysis). Variables included median household income, the number of white people 247 

in a block group or ZCTA, median age, and total population (used to derive population density, 248 

and the proportion POC in the block group or ZCTA).  249 

 250 



Statistical analyses. We conducted two analyses at different spatial scales. In the first, we 251 

analyzed COVID-19 rates using data from 17 states at the ZIP Code scale using a negative 252 

binomial generalized linear mixed effects model. In the second, we quantified nature inequality 253 

in all urbanized areas in the US at the block group scale. This analysis used SAR models to relate 254 

NDVI and park proximity to socio-demographic factors. All analyses were performed in R 255 

(version 4.02)46. SARs were performed using the package spdep47, and negative binomial mixed 256 

effects models were performed using the package lme448. 257 

 258 

COVID-19. We analyzed COVID-19 case rates by ZIP Code using a negative binomial 259 

generalized linear mixed effects model, after verifying the absence of significant spatial 260 

autocorrelation using the Moran’s I statistic49. A single full model related COVID-19 case rates 261 

in each ZIP Code to fixed effects for NDVI, park proximity, the proportion white people, median 262 

income, population density, median age, and the total number of days since the first recorded 263 

case (county-scale). We included state as a random effect to account for the non-independence of 264 

data from the same state that could occur as a result of processes we are not capturing with 265 

available data, such as differences in the timing of public policy responses such as lockdowns or 266 

mask mandates49. All explanatory variables were centered and scaled. To estimate the impact of 267 

a 0.1 increment change in NDVI, We fit an additional model using unscaled NDVI multiplied by 268 

10 (all other variables scaled) in order to calculate the Incidence Rate Ratio (IRR), or 269 

exponentiated effect estimates and their 95% confidence intervals, to determine how a 0.1 270 

increment of change in NDVI affects COVID-19 case rates50.  271 

 272 



Nature inequality. To evaluate the relationship between nature access and socio-demographic 273 

variables, we built two models and analyzed park proximity and NDVI separately. Both models 274 

included median income, the proportion white people, and the population density in the block 275 

group as covariates, and the aridity index was also included in the NDVI model. We evaluated 276 

whether spatial autocorrelation was present using the regression residuals from an ordinary least 277 

squares model using the Moran’s I statistic. At the block group scale, models for NDVI (Moran’s 278 

I = 0.64, P Value <0.001) and park proximity (Moran’s I = 0.62, P Value < 0.001) models both 279 

contained evidence of significant spatial autocorrelation. To address this issue, we used SAR 280 

error models, which include a spatial error term defined from a neighborhood matrix and 281 

autocorrelation in the dependent variable51. These models assume the autoregressive process is 282 

found only in the error term, such as when spatial autocorrelation is not fully explained by the 283 

included explanatory variables52.  284 
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Figures  297 

                                                                                                                                                                                                                                                                                  298 

 299 

 300 

Fig. 1 | COVID-19 case rates are related to both greenness and race/ethnicity. a, This 301 

analysis used reported COVID-19 cases at the ZIP Code scale from 17 states. b, Average NDVI 302 

values and c, COVID-19 case rates per 100,000 people across ZIP Codes around Chicago, IL, as 303 

an example. d, Barchart of greenness (NDVI) represented as quantiles and rates of COVID-19 304 

showing a decline in cases with higher NDVI. e, Barchart of greenness showing higher greenness 305 

in white majority ZIP Codes. f, COVID-19 case rates (per 100,000) showing lower rates of cases 306 

in majority white ZIP codes. Error bars represent approximate 95% confidence intervals.   307 



 308 

 309 

  310 

Fig. 2 | Greener ZIP Codes have fewer COVID-19 cases after accounting for other factors. 311 

Coefficient values represent effect sizes from a negative binomial mixed effects model for the 312 

relationship between rates of COVID-19 (cases/100,000 people) and greenness (NDVI), park 313 

access (ha), median income, median age, proportion persons of color, days since the first case 314 

(county-scale), and population density. Coefficient values are represented as dots, bars represent 315 

95% confidence intervals, and significant variables are shown in red.  316 

 317 

 318 

  319 



320 

Fig. 3 | Nature access is inequitably distributed across urbanized areas in the US. a, 321 

Greenness (NDVI) and park proximity (hectares) across all 486 urbanized areas in the US 322 

(including 142,325 block groups). Urbanized areas are represented by a point, and values for 323 

greenness and park proximity are within-urbanized area averages. b, Barchart of greenness 324 

(NDVI), and c, park proximity by race/ethnicity, showing higher greenness in white majority 325 

block groups. d, Barchart of greenness (NDVI) and e, park proximity across all income 326 

quantiles, showing higher greenness and more parks in block groups with higher income. Error 327 

bars represent approximate 95% confidence intervals.   328 
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